BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26267136)

  • 1. The Mechanism by which 146-N-Glycan Affects the Active Site of Neuraminidase.
    Liu P; Wang Z; Zhang L; Li D; Lin J
    PLoS One; 2015; 10(8):e0135487. PubMed ID: 26267136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycan binding and specificity of viral influenza neuraminidases by classical molecular dynamics and replica exchange molecular dynamics simulations.
    Phanich J; Threeracheep S; Kungwan N; Rungrotmongkol T; Hannongbua S
    J Biomol Struct Dyn; 2019 Aug; 37(13):3354-3365. PubMed ID: 30126341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation-induced loop opening and energetics for binding of tamiflu to influenza N8 neuraminidase.
    Kar P; Knecht V
    J Phys Chem B; 2012 May; 116(21):6137-49. PubMed ID: 22553951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a new benzoic acid inhibitor of influenza neuraminidase bound with a new tilt induced by overpacking subsite C6.
    Venkatramani L; Johnson ES; Kolavi G; Air GM; Brouillette WJ; Mooers BH
    BMC Struct Biol; 2012 May; 12():7. PubMed ID: 22559154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MD simulation of the interaction between sialoglycans and the second sialic acid binding site of influenza A virus N1 neuraminidase.
    Elli S; Gambacorta N; Rudd TR; Matrosovich M; Guerrini M
    Biochem J; 2021 Jan; 478(2):423-441. PubMed ID: 33410905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Simulations Examining Glycan Shield Effects on Drug Binding to Influenza Neuraminidase.
    Seitz C; Casalino L; Konecny R; Huber G; Amaro RE; McCammon JA
    Biophys J; 2020 Dec; 119(11):2275-2289. PubMed ID: 33130120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of 150-cavity formation in influenza neuraminidase.
    Amaro RE; Swift RV; Votapka L; Li WW; Walker RC; Bush RM
    Nat Commun; 2011 Jul; 2():388. PubMed ID: 21750542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.
    Han N; Mu Y
    PLoS One; 2013; 8(4):e60995. PubMed ID: 23593372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 340-cavity in neuraminidase provides new opportunities for influenza drug development: A molecular dynamics simulation study.
    Han N; Mu Y; Miao H; Yang Y; Wu Q; Li J; Ding J; Xu B; Huang Z
    Biochem Biophys Res Commun; 2016 Jan; 470(1):130-136. PubMed ID: 26768362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of the 340-Loop in Influenza Neuraminidase Offers New Insight for Antiviral Drug Development.
    Han N; Ng JTY; Li Y; Mu Y; Huang Z
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32781779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long time scale GPU dynamics reveal the mechanism of drug resistance of the dual mutant I223R/H275Y neuraminidase from H1N1-2009 influenza virus.
    Woods CJ; Malaisree M; Pattarapongdilok N; Sompornpisut P; Hannongbua S; Mulholland AJ
    Biochemistry; 2012 May; 51(21):4364-75. PubMed ID: 22574858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of 150-cavity binders on the dynamics of influenza A neuraminidases as revealed by molecular dynamics simulations and combined clustering.
    Greenway KT; LeGresley EB; Pinto BM
    PLoS One; 2013; 8(3):e59873. PubMed ID: 23544106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active 1918 pandemic flu viral neuraminidase has distinct N-glycan profile and is resistant to trypsin digestion.
    Wu ZL; Ethen C; Hickey GE; Jiang W
    Biochem Biophys Res Commun; 2009 Feb; 379(3):749-53. PubMed ID: 19133226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and assay of oseltamivir-resistant mutants of influenza neuraminidase via direct observation of drug unbinding and rebinding in simulation.
    Woods CJ; Malaisree M; Long B; McIntosh-Smith S; Mulholland AJ
    Biochemistry; 2013 Nov; 52(45):8150-64. PubMed ID: 24128064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of Autotaxin: roles of the nuclease-like domain and the glycan modification.
    Koyama M; Nishimasu H; Ishitani R; Nureki O
    J Phys Chem B; 2012 Oct; 116(39):11798-808. PubMed ID: 22967301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism-based inhibitors to probe transitional states of glycoside hydrolases.
    Hinou H; Kurogochi M; Nishimura S
    Methods Enzymol; 2006; 415():202-12. PubMed ID: 17116476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of Tamiflu derivatives targeting at the open conformation of neuraminidase subtype 1.
    Li Y; Zhou B; Wang R
    J Mol Graph Model; 2009 Oct; 28(3):203-19. PubMed ID: 19656699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into susceptibility of antiviral drugs against the E119G mutant of 2009 influenza A (H1N1) neuraminidase by molecular dynamics simulations and free energy calculations.
    Pan P; Li L; Li Y; Li D; Hou T
    Antiviral Res; 2013 Nov; 100(2):356-64. PubMed ID: 24055835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How hydrophobicity and the glycosylation site of glycans affect protein folding and stability: a molecular dynamics simulation.
    Lu D; Yang C; Liu Z
    J Phys Chem B; 2012 Jan; 116(1):390-400. PubMed ID: 22118044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.