These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26267183)

  • 1. Pathways for H2 Activation on (Ni)-MoS2 Catalysts.
    Schachtl E; Kondratieva E; Gutiérrez OY; Lercher JA
    J Phys Chem Lett; 2015 Aug; 6(15):2929-32. PubMed ID: 26267183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical insight into the rearrangement of sulfur atoms on the Ni- and Cu-doped MoS
    Vidal AB; Hurtado-Aular O; Peña-Mena JL; Añez R; Sierraalta A
    Phys Chem Chem Phys; 2024 Apr; 26(15):12188-12198. PubMed ID: 38591269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical and Optical Characterization of MoS2 with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules.
    Cho K; Min M; Kim TY; Jeong H; Pak J; Kim JK; Jang J; Yun SJ; Lee YH; Hong WK; Lee T
    ACS Nano; 2015 Aug; 9(8):8044-53. PubMed ID: 26262556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co(Ni)/MoS2 nanostructured catalysts for the hydrodesulphurization of dibenzothiophene.
    Albiter MA; Huirache-Acuña R; Paraguay-Delgado F; Zaera F; Alonso-Núñez G
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6437-44. PubMed ID: 19205218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study.
    Li H; Huang M; Cao G
    Phys Chem Chem Phys; 2016 Jun; 18(22):15110-7. PubMed ID: 27198064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation effects of S vacancy and Mo edge on the adsorption and dissociation behaviors of toxic gas (H
    Huang M; Dinesh A; Wu S
    Phys Chem Chem Phys; 2021 Jul; 23(28):15364-15373. PubMed ID: 34254618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximizing Active Site Concentrations at Ni-Substituted WS
    Luo W; Shi H; Wagenhofer M; Gutiérrez O; Lercher J
    J Phys Chem Lett; 2019 Sep; 10(18):5617-5622. PubMed ID: 31469280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen physisorption based on the dissociative hydrogen chemisorption at the sulphur vacancy of MoS
    Han SW; Cha GB; Park Y; Hong SC
    Sci Rep; 2017 Aug; 7(1):7152. PubMed ID: 28769059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen activation on Mo-based sulfide catalysts, a periodic DFT study.
    Travert A; Nakamura H; van Santen RA; Cristol S; Paul JF; Payen E
    J Am Chem Soc; 2002 Jun; 124(24):7084-95. PubMed ID: 12059233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen production via supercritical water gasification of bagasse using Ni-Cu/γ-Al2O3 nano-catalysts.
    Mehrani R; Barati M; Tavasoli A; Karimi A
    Environ Technol; 2015; 36(9-12):1265-72. PubMed ID: 25387488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.
    Chen CL; Wang CH; Weng HS
    Chemosphere; 2004 Aug; 56(5):425-31. PubMed ID: 15212907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pocketlike Active Site of Rh
    Lou Y; Zheng Y; Li X; Ta N; Xu J; Nie Y; Cho K; Liu J
    J Am Chem Soc; 2019 Dec; 141(49):19289-19295. PubMed ID: 31680520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation.
    Zong X; Yan H; Wu G; Ma G; Wen F; Wang L; Li C
    J Am Chem Soc; 2008 Jun; 130(23):7176-7. PubMed ID: 18473462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the MoS
    Wang Q; Li X; Ma X; Li Z; Yang Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7741-7755. PubMed ID: 35112567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface properties of Ni-Pt/SiO2 catalysts for N2O decomposition and reduction by H2.
    Arenas-Alatorre J; Gómez-Cortés A; Avalos-Borja M; Díaz G
    J Phys Chem B; 2005 Feb; 109(6):2371-6. PubMed ID: 16851231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Detection of Active Edge Sites in Single-Layer MoS2 Catalysts.
    Bruix A; Füchtbauer HG; Tuxen AK; Walton AS; Andersen M; Porsgaard S; Besenbacher F; Hammer B; Lauritsen JV
    ACS Nano; 2015 Sep; 9(9):9322-30. PubMed ID: 26203593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Sites on Nickel-Promoted Transition-Metal Sulfides That Catalyze Hydrogenation of Aromatic Compounds.
    Luo W; Shi H; Schachtl E; Gutiérrez OY; Lercher JA
    Angew Chem Int Ed Engl; 2018 Oct; 57(44):14555-14559. PubMed ID: 30182419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ IR spectroscopic studies of Ni surface segregation induced by CO adsorption on Cu-Ni/SiO2 bimetallic catalysts.
    Yao Y; Goodman DW
    Phys Chem Chem Phys; 2014 Feb; 16(8):3823-9. PubMed ID: 24435048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study.
    Tsai C; Chan K; Abild-Pedersen F; Nørskov JK
    Phys Chem Chem Phys; 2014 Jul; 16(26):13156-64. PubMed ID: 24866567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias from H2 cleavage to production and coordination changes at the Ni-Fe active site in the NAD+-reducing hydrogenase from Ralstonia eutropha.
    Löscher S; Burgdorf T; Zebger I; Hildebrandt P; Dau H; Friedrich B; Haumann M
    Biochemistry; 2006 Sep; 45(38):11658-65. PubMed ID: 16981725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.