These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26267209)

  • 1. Spontaneous Oxidation of Ni Nanoclusters on MgO Monolayers Induced by Segregation of Interfacial Oxygen.
    Smerieri M; Pal J; Savio L; Vattuone L; Ferrando R; Tosoni S; Giordano L; Pacchioni G; Rocca M
    J Phys Chem Lett; 2015 Aug; 6(15):3104-9. PubMed ID: 26267209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology of monolayer MgO films on Ag(100): switching from corrugated islands to extended flat terraces.
    Pal J; Smerieri M; Celasco E; Savio L; Vattuone L; Rocca M
    Phys Rev Lett; 2014 Mar; 112(12):126102. PubMed ID: 24724662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transfers at metal/oxide interfaces: a DFT study of formation of K delta+ and Au delta- species on MgO/Ag(100) ultra-thin films from deposition of neutral atoms.
    Giordano L; Pacchioni G
    Phys Chem Chem Phys; 2006 Jul; 8(28):3335-41. PubMed ID: 16835682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicted oxidation of CO catalyzed by Au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface.
    Zhang C; Yoon B; Landman U
    J Am Chem Soc; 2007 Feb; 129(8):2228-9. PubMed ID: 17266316
    [No Abstract]   [Full Text] [Related]  

  • 5. A first-principles study of ultrathin nanofilms of MgO-supported TiN.
    Zhang RQ; Kim CE; Delley B; Stampfl C; Soon A
    Phys Chem Chem Phys; 2012 Feb; 14(7):2462-7. PubMed ID: 22249386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth-mode and interface structure of epitaxial ultrathin MgO/Ag(001) films.
    De Santis M; Langlais V; Schneider K; Torrelles X
    J Phys Condens Matter; 2021 May; 33(26):. PubMed ID: 33902021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ growth of carbon nanotubes on Ni/MgO: a facile preparation of efficient catalysts for the production of synthetic natural gas from syngas.
    Fan MT; Lin JD; Zhang HB; Liao DW
    Chem Commun (Camb); 2015 Nov; 51(86):15720-3. PubMed ID: 26365211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of the growth process of MgO nanoflowers by a simple chemical route.
    Fang XS; Ye CH; Zhang LD; Zhang JX; Zhao JW; Yan P
    Small; 2005 Apr; 1(4):422-8. PubMed ID: 17193467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial oxidation of ultrathin nickel and chromium films on yttria-stabilized zirconia.
    Khyzhun O; Sygellou L; Ladas S
    J Phys Chem B; 2005 Feb; 109(6):2302-6. PubMed ID: 16851223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water dissociation at MgO sub-monolayers on silver: a periodic model study.
    Ferrari AM; Roetti C; Pisani C
    Phys Chem Chem Phys; 2007 May; 9(19):2350-4. PubMed ID: 17492097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy.
    Knudsen J; Merte LR; Peng G; Vang RT; Resta A; Laegsgaard E; Andersen JN; Mavrikakis M; Besenbacher F
    ACS Nano; 2010 Aug; 4(8):4380-7. PubMed ID: 20731424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation and mobility model of Agn clusters adsorbed on perfect and oxygen vacancy MgO surfaces.
    Liu Y; Wang Y; Chen G
    J Mol Model; 2011 May; 17(5):1061-8. PubMed ID: 20658303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts.
    Singh A; Fekete M; Gengenbach T; Simonov AN; Hocking RK; Chang SL; Rothmann M; Powar S; Fu D; Hu Z; Wu Q; Cheng YB; Bach U; Spiccia L
    ChemSusChem; 2015 Dec; 8(24):4266-74. PubMed ID: 26617200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inherent electrochemistry of nickel/nickel-oxide nanoparticles.
    Giovanni M; Ambrosi A; Pumera M
    Chem Asian J; 2012 Apr; 7(4):702-6. PubMed ID: 22331627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of magnesia-supported Pd-clusters leads to the ultimate limit of epitaxy with a catalytic function.
    Huber B; Koskinen P; Häkkinen H; Moseler M
    Nat Mater; 2006 Jan; 5(1):44-7. PubMed ID: 16327788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity correlations in a nickel-borate oxygen evolution catalyst.
    Bediako DK; Lassalle-Kaiser B; Surendranath Y; Yano J; Yachandra VK; Nocera DG
    J Am Chem Soc; 2012 Apr; 134(15):6801-9. PubMed ID: 22417283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of hydrogen permeation through mixed NiO-MgO films supported on Mo(100): role of the oxide-metal interface.
    Torres D; Illas F; Liu P
    J Phys Chem A; 2014 Aug; 118(31):5756-61. PubMed ID: 24446885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications.
    Swaroop C; Shukla M
    Int J Biol Macromol; 2018 Jul; 113():729-736. PubMed ID: 29499267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Adatoms and Clusters on Ultrathin Zirconia Films.
    Choi JI; Mayr-Schmölzer W; Valenti I; Luches P; Mittendorfer F; Redinger J; Diebold U; Schmid M
    J Phys Chem C Nanomater Interfaces; 2016 May; 120(18):9920-9932. PubMed ID: 27213024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.