These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 26267356)
1. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955 [TBL] [Abstract][Full Text] [Related]
3. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
4. LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin. Zheng C; Choquer M; Zhang B; Ge H; Hu S; Ma H; Chen S Fungal Biol; 2011 Sep; 115(9):815-32. PubMed ID: 21872179 [TBL] [Abstract][Full Text] [Related]
5. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence. Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986 [TBL] [Abstract][Full Text] [Related]
6. VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance. Xie X; Wang Y Planta; 2016 Nov; 244(5):1075-1094. PubMed ID: 27424038 [TBL] [Abstract][Full Text] [Related]
7. Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production. Verhagen B; Trotel-Aziz P; Jeandet P; Baillieul F; Aziz A Phytopathology; 2011 Jul; 101(7):768-77. PubMed ID: 21425931 [TBL] [Abstract][Full Text] [Related]
8. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Chong J; Piron MC; Meyer S; Merdinoglu D; Bertsch C; Mestre P J Exp Bot; 2014 Dec; 65(22):6589-601. PubMed ID: 25246444 [TBL] [Abstract][Full Text] [Related]
9. Li T; Chen G; Zhang Q Plant Signal Behav; 2021 Oct; 16(10):1940019. PubMed ID: 34254885 [TBL] [Abstract][Full Text] [Related]
10. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional expression of Stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine. Dai R; Ge H; Howard S; Qiu W Plant Sci; 2012 Dec; 197():70-6. PubMed ID: 23116673 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875 [TBL] [Abstract][Full Text] [Related]
13. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. Wang M; Zhu Y; Han R; Yin W; Guo C; Li Z; Wang X Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29494485 [TBL] [Abstract][Full Text] [Related]
14. Dual RNA Sequencing of Gonçalves MFM; Nunes RB; Tilleman L; Van de Peer Y; Deforce D; Van Nieuwerburgh F; Esteves AC; Alves A Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31816814 [No Abstract] [Full Text] [Related]
15. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Wang K; Liao Y; Kan J; Han L; Zheng Y Int J Food Microbiol; 2015 Feb; 194():32-9. PubMed ID: 25461606 [TBL] [Abstract][Full Text] [Related]
16. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740 [TBL] [Abstract][Full Text] [Related]
18. Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. Adrian M; Jeandet P Fitoterapia; 2012 Dec; 83(8):1345-50. PubMed ID: 22516542 [TBL] [Abstract][Full Text] [Related]
19. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Aziz A; Poinssot B; Daire X; Adrian M; Bézier A; Lambert B; Joubert JM; Pugin A Mol Plant Microbe Interact; 2003 Dec; 16(12):1118-28. PubMed ID: 14651345 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the role of AcTPR2 in kiwifruit and its response to Botrytis cinerea infection. Li ZX; Lan JB; Liu YQ; Qi LW; Tang JM BMC Plant Biol; 2020 Dec; 20(1):557. PubMed ID: 33302873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]