BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26267356)

  • 21. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection.
    Dadakova K; Havelkova M; Kurkova B; Tlolkova I; Kasparovsky T; Zdrahal Z; Lochman J
    J Proteomics; 2015 Apr; 119():143-53. PubMed ID: 25688916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.
    Rienth M; Torregrosa L; Luchaire N; Chatbanyong R; Lecourieux D; Kelly MT; Romieu C
    BMC Plant Biol; 2014 Apr; 14():108. PubMed ID: 24774299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z
    Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea.
    Reboledo G; Agorio AD; Vignale L; Batista-García RA; Ponce De León I
    Plant Mol Biol; 2021 Nov; 107(4-5):365-385. PubMed ID: 33521880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses.
    Malacarne G; Vrhovsek U; Zulini L; Cestaro A; Stefanini M; Mattivi F; Delledonne M; Velasco R; Moser C
    BMC Plant Biol; 2011 Aug; 11():114. PubMed ID: 21838877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C
    Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W
    BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine.
    Verhagen BW; Trotel-Aziz P; Couderchet M; Höfte M; Aziz A
    J Exp Bot; 2010; 61(1):249-60. PubMed ID: 19812243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine.
    Gruau C; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1117-29. PubMed ID: 26075828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence.
    Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B
    Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening
    Rahman MU; Hanif M; Wan R; Hou X; Ahmad B; Wang X
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30577474
    [No Abstract]   [Full Text] [Related]  

  • 32. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot.
    Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D
    Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea.
    Herzog K; Wind R; Töpfer R
    Sensors (Basel); 2015 May; 15(6):12498-512. PubMed ID: 26024417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection.
    Peian Z; Haifeng J; Peijie G; Sadeghnezhad E; Qianqian P; Tianyu D; Teng L; Huanchun J; Jinggui F
    Food Chem; 2021 Feb; 337():127772. PubMed ID: 32777571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strawberry
    Jia S; Wang Y; Zhang G; Yan Z; Cai Q
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions.
    Finiti I; Leyva MO; López-Cruz J; Calderan Rodrigues B; Vicedo B; Angulo C; Bennett AB; Grant M; García-Agustín P; González-Bosch C
    Plant Biol (Stuttg); 2013 Sep; 15(5):819-31. PubMed ID: 23528138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.
    Vega A; Gutiérrez RA; Peña-Neira A; Cramer GR; Arce-Johnson P
    Plant Mol Biol; 2011 Oct; 77(3):261-74. PubMed ID: 21786204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration.
    Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM
    Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the defense-related gene
    Zhang Y; Yao JL; Feng H; Jiang J; Fan X; Jia YF; Wang R; Liu C
    Hereditas; 2019; 156():14. PubMed ID: 31057347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.