These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26267386)

  • 1. Advanced and In Situ Analytical Methods for Solar Fuel Materials.
    Chan CK; Tüysüz H; Braun A; Ranjan C; La Mantia F; Miller BK; Zhang L; Crozier PA; Haber JA; Gregoire JM; Park HS; Batchellor AS; Trotochaud L; Boettcher SW
    Top Curr Chem; 2016; 371():253-324. PubMed ID: 26267386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic force microscopy: Emerging illuminated and operando techniques for solar fuel research.
    Yu W; Fu HJ; Mueller T; Brunschwig BS; Lewis NS
    J Chem Phys; 2020 Jul; 153(2):020902. PubMed ID: 32668946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications.
    Pishgar S; Gulati S; Strain JM; Liang Y; Mulvehill MC; Spurgeon JM
    Small Methods; 2021 Jul; 5(7):e2100322. PubMed ID: 34927994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.
    Stoerzinger KA; Hong WT; Crumlin EJ; Bluhm H; Shao-Horn Y
    Acc Chem Res; 2015 Nov; 48(11):2976-83. PubMed ID: 26305627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge.
    Bard AJ
    J Am Chem Soc; 2010 Jun; 132(22):7559-67. PubMed ID: 20469860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-Based Photocatalysts for Solar-Fuel Generation.
    Xiang Q; Cheng B; Yu J
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11350-66. PubMed ID: 26079429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: spectroelectrochemical characterization of water oxidation electrocatalysts.
    Joya KS; Sala X
    Phys Chem Chem Phys; 2015 Sep; 17(33):21094-103. PubMed ID: 25698502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-architecture and material designs for water splitting photoelectrodes.
    Chen HM; Chen CK; Liu RS; Zhang L; Zhang J; Wilkinson DP
    Chem Soc Rev; 2012 Sep; 41(17):5654-71. PubMed ID: 22763382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function analyses of solar fuels catalysts using in situ X-ray scattering.
    Mulfort KL; Mukherjee A; Kokhan O; Du P; Tiede DM
    Chem Soc Rev; 2013 Mar; 42(6):2215-27. PubMed ID: 23120752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.
    Wang W; Tadé MO; Shao Z
    Chem Soc Rev; 2015 Aug; 44(15):5371-408. PubMed ID: 25976276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis.
    DuChene JS; Sweeny BC; Johnston-Peck AC; Su D; Stach EA; Wei WD
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7887-91. PubMed ID: 24920227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis.
    Sivula K
    J Phys Chem Lett; 2013 May; 4(10):1624-33. PubMed ID: 26282969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-splitting catalysis and solar fuel devices: artificial leaves on the move.
    Joya KS; Joya YF; Ocakoglu K; van de Krol R
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10426-37. PubMed ID: 23955876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techniques and methodologies in modern electrocatalysis: evaluation of activity, selectivity and stability of catalytic materials.
    Bandarenka AS; Ventosa E; Maljusch A; Masa J; Schuhmann W
    Analyst; 2014 Mar; 139(6):1274-91. PubMed ID: 24418971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancing Materials and Methods for Photoelectrochemical Energy Conversion.
    Sivula K
    Chimia (Aarau); 2017 Aug; 71(7):471-474. PubMed ID: 28779770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural transformations of solid electrocatalysts and photocatalysts.
    Liu L; Corma A
    Nat Rev Chem; 2021 Apr; 5(4):256-276. PubMed ID: 37117283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar Water Splitting Using Semiconductor Photocatalyst Powders.
    Takanabe K
    Top Curr Chem; 2016; 371():73-103. PubMed ID: 26134367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.