BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26267389)

  • 1. Multistep Molecular Dynamics Simulations Identify the Highly Cooperative Activity of Melittin in Recognizing and Stabilizing Membrane Pores.
    Sun D; Forsman J; Woodward CE
    Langmuir; 2015 Sep; 31(34):9388-401. PubMed ID: 26267389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melittin creates transient pores in a lipid bilayer: results from computer simulations.
    Santo KP; Irudayam SJ; Berkowitz ML
    J Phys Chem B; 2013 May; 117(17):5031-42. PubMed ID: 23534858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of mean force for insertion of antimicrobial peptide melittin into a pore in mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation.
    Lyu Y; Xiang N; Zhu X; Narsimhan G
    J Chem Phys; 2017 Apr; 146(15):155101. PubMed ID: 28433027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides.
    Miyazaki Y; Okazaki S; Shinoda W
    Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1409-1419. PubMed ID: 30885804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative antimicrobial action of melittin on lipid membranes: A coarse-grained molecular dynamics study.
    Miyazaki Y; Shinoda W
    Biochim Biophys Acta Biomembr; 2022 Sep; 1864(9):183955. PubMed ID: 35526599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D; Leontiadou H; Mark AE; Marrink SJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organizations of melittin peptides after spontaneous penetration into cell membranes.
    Sun L; Wang S; Tian F; Zhu H; Dai L
    Biophys J; 2022 Nov; 121(22):4368-4381. PubMed ID: 36199252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding and reorientation of melittin in a POPC bilayer: computer simulations.
    Irudayam SJ; Berkowitz ML
    Biochim Biophys Acta; 2012 Dec; 1818(12):2975-81. PubMed ID: 22877705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state.
    Irudayam SJ; Pobandt T; Berkowitz ML
    J Phys Chem B; 2013 Oct; 117(43):13457-63. PubMed ID: 24117276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process of inducing pores in membranes by melittin.
    Lee MT; Sun TL; Hung WC; Huang HW
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14243-8. PubMed ID: 23940362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cause and effect of melittin-induced pore formation: a computational approach.
    Manna M; Mukhopadhyay C
    Langmuir; 2009 Oct; 25(20):12235-42. PubMed ID: 19754202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights from Micro-second Atomistic Simulations of Melittin in Thin Lipid Bilayers.
    Upadhyay SK; Wang Y; Zhao T; Ulmschneider JP
    J Membr Biol; 2015 Jun; 248(3):497-503. PubMed ID: 25963936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular response and cooperative behavior during the interactions of melittin with a membrane: dissipative quartz crystal microbalance experiments and simulations.
    Lu N; Yang K; Yuan B; Ma Y
    J Phys Chem B; 2012 Aug; 116(31):9432-8. PubMed ID: 22794087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore formation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol mixed bilayers by low concentrations of antimicrobial peptide melittin.
    Zhou L; Narsimhan G; Wu X; Du F
    Colloids Surf B Biointerfaces; 2014 Nov; 123():419-28. PubMed ID: 25306255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Simulations of Melittin-Induced Membrane Pores.
    Sun D; Forsman J; Woodward CE
    J Phys Chem B; 2017 Nov; 121(44):10209-10214. PubMed ID: 29035531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of a melittin-stabilized pore.
    Leveritt JM; Pino-Angeles A; Lazaridis T
    Biophys J; 2015 May; 108(10):2424-2426. PubMed ID: 25992720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial peptides in toroidal and cylindrical pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1485-93. PubMed ID: 20403332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.