These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 26267506)

  • 41. The growth of Saccharomyces cerevisiae CBS 426 on mixtures of glucose and ethanol: a model.
    Bonnet JA; de Kok HE; Roels JA
    Antonie Van Leeuwenhoek; 1980; 46(6):565-76. PubMed ID: 7016030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae.
    Franzén CJ
    Yeast; 2003 Jan; 20(2):117-32. PubMed ID: 12518316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioethanol production from Yarrowia lipolytica Po1g biomass.
    Tsigie YA; Wu CH; Huynh LH; Ismadji S; Ju YH
    Bioresour Technol; 2013 Oct; 145():210-6. PubMed ID: 23265824
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry.
    Taymaz-Nikerel H; Borujeni AE; Verheijen PJ; Heijnen JJ; van Gulik WM
    Biotechnol Bioeng; 2010 Oct; 107(2):369-81. PubMed ID: 20506321
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae.
    Roca C; Olsson L
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):560-3. PubMed ID: 12536256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae.
    Pampulha ME; Loureiro-Dias MC
    FEMS Microbiol Lett; 2000 Mar; 184(1):69-72. PubMed ID: 10689168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol.
    de Jong-Gubbels P; Vanrolleghem P; Heijnen S; van Dijken JP; Pronk JT
    Yeast; 1995 Apr; 11(5):407-18. PubMed ID: 7597844
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heat flux measurements for the fast monitoring of dynamic responses to glucose additions by yeasts that were subjected to different feeding regimes in continuous culture.
    van Kleeff BH; Kuenen JG; Heijnen JJ
    Biotechnol Prog; 1996; 12(4):510-8. PubMed ID: 8987477
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae.
    Aon JC; Cortassa S
    Metab Eng; 2001 Jul; 3(3):250-64. PubMed ID: 11461147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fermentation characteristics of Dekkera bruxellensis strains.
    Blomqvist J; Eberhard T; Schnürer J; Passoth V
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1487-97. PubMed ID: 20437232
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The growth characteristics of the yeast Saccharomyces cerevisiae on media containing ethanol and saccharose].
    Podgorskiĭ VS; Gavrilenko MN; Sumnevich VG; Zyrianova LF
    Mikrobiol Z; 1995; 57(1):19-24. PubMed ID: 7728273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alternate method of calculating the free-energy change accompanying the growth of saccharomyces cerevisiae (Hansen) on three substrates.
    Battley EH
    Biotechnol Bioeng; 1979 Nov; 21(11):1929-61. PubMed ID: 385077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring the impact of magnetic fields on biomass production efficiency under aerobic and anaerobic batch fermentation of Saccharomyces cerevisiae.
    Sincak M; Turker M; Derman ÜC; Erdem A; Jandacka P; Luptak M; Luptakova A; Sedlakova-Kadukova J
    Sci Rep; 2024 Jun; 14(1):12869. PubMed ID: 38834614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high- and very high-gravity worts.
    Guimarães PM; Londesborough J
    Yeast; 2008 Jan; 25(1):47-58. PubMed ID: 17944006
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Growth of Saccharomyces cerevisiae in a chemostat under high glucose conditions.
    Zhao Y; Lin YH
    Biotechnol Lett; 2003 Jul; 25(14):1151-4. PubMed ID: 12967003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.