These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 26267515)
1. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1). Díaz F; Orobio RF; Chavarriaga P; Toro-Perea N J Therm Biol; 2015 Aug; 52():199-207. PubMed ID: 26267515 [TBL] [Abstract][Full Text] [Related]
2. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). Lü ZC; Wan FH J Exp Biol; 2011 Mar; 214(Pt 5):764-9. PubMed ID: 21307062 [TBL] [Abstract][Full Text] [Related]
3. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci. Wang H; Lei Z; Li X; Oetting RD Environ Entomol; 2011 Feb; 40(1):132-9. PubMed ID: 22182622 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress. Wang XR; Wang C; Ban FX; Zhu DT; Liu SS; Wang XW Insect Sci; 2019 Feb; 26(1):44-57. PubMed ID: 28714602 [TBL] [Abstract][Full Text] [Related]
5. Upregulation of temperature susceptibility in Bemisia tabaci upon acquisition of Tomato yellow leaf curl virus (TYLCV). Pusag JC; Hemayet Jahan SM; Lee KS; Lee S; Lee KY J Insect Physiol; 2012 Oct; 58(10):1343-8. PubMed ID: 22841829 [TBL] [Abstract][Full Text] [Related]
6. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells. Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456 [TBL] [Abstract][Full Text] [Related]
7. Isolation of two new genes encoding heat shock protein 70 in Bemisia tabaci and analysis during thermal stress. Bai J; Wang YC; Liu YC; Chang YW; Liu XN; Gong WR; Du YZ Int J Biol Macromol; 2021 Dec; 193(Pt A):933-940. PubMed ID: 34728307 [TBL] [Abstract][Full Text] [Related]
8. Differential tolerance capacity to unfavourable low and high temperatures between two invasive whiteflies. Xiao N; Pan LL; Zhang CR; Shan HW; Liu SS Sci Rep; 2016 Apr; 6():24306. PubMed ID: 27080927 [TBL] [Abstract][Full Text] [Related]
9. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies. Hu JT; Chen B; Li ZH J Insect Physiol; 2014 Aug; 67():105-13. PubMed ID: 24992713 [TBL] [Abstract][Full Text] [Related]
10. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage. Jiang R; Qi LD; Du YZ; Li YX J Econ Entomol; 2017 Oct; 110(5):2190-2198. PubMed ID: 28961720 [TBL] [Abstract][Full Text] [Related]
11. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Mahadav A; Kontsedalov S; Czosnek H; Ghanim M Insect Biochem Mol Biol; 2009 Oct; 39(10):668-76. PubMed ID: 19683053 [TBL] [Abstract][Full Text] [Related]
12. Transcription dynamics of heat-shock proteins (Hsps) and endosymbiont titres in response to thermal stress in whitefly, Barman M; Samanta S; Ahmed B; Dey S; Chakraborty S; Deeksha MG; Dutta S; Samanta A; Tarafdar J; Roy D Front Physiol; 2022; 13():1097459. PubMed ID: 36714306 [TBL] [Abstract][Full Text] [Related]
13. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster. Sørensen JG; Loeschcke V; Kristensen TN J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086 [TBL] [Abstract][Full Text] [Related]
14. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Wang SH; Cheng CY; Tang PC; Chen CF; Chen HH; Lee YP; Huang SY Theriogenology; 2013 Jan; 79(2):374-82.e1-7. PubMed ID: 23154143 [TBL] [Abstract][Full Text] [Related]
15. Multiple generation effects of high temperature on the development and fecundity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Guo JY; Cong L; Wan FH Insect Sci; 2013 Aug; 20(4):541-9. PubMed ID: 23955949 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. Edington BV; Whelan SA; Hightower LE J Cell Physiol; 1989 May; 139(2):219-28. PubMed ID: 2469684 [TBL] [Abstract][Full Text] [Related]
17. Cloning and expression analysis of four heat shock protein genes in Ericerus pela (Homoptera: Coccidae). Liu WW; Yang P; Chen XM; Xu DL; Hu YH J Insect Sci; 2014; 14():. PubMed ID: 25826465 [TBL] [Abstract][Full Text] [Related]
18. Evidence for adaptive divergence of thermal responses among Bemisia tabaci populations from tropical Colombia following a recent invasion. Díaz F; Muñoz-Valencia V; Juvinao-Quintero DL; Manzano-Martínez MR; Toro-Perea N; Cárdenas-Henao H; Hoffmann AA J Evol Biol; 2014 Jun; 27(6):1160-71. PubMed ID: 24800647 [TBL] [Abstract][Full Text] [Related]
19. Mathematical modeling of heat shock protein synthesis in response to temperature change. Szymańska Z; Zylicz M J Theor Biol; 2009 Aug; 259(3):562-9. PubMed ID: 19327370 [TBL] [Abstract][Full Text] [Related]