These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26267706)

  • 1. In Silico Analysis for Five Major Cereal Crops Phytocystatins.
    Chauhan R; Jasrai Y; Pandya H
    Interdiscip Sci; 2015 Sep; 7(3):233-41. PubMed ID: 26267706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico analysis for five major cereal crops phytocystatins.
    Chauhan R; Jasrai Y; Pandya H
    Interdiscip Sci; 2014 Aug; ():. PubMed ID: 25118653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of sequential, structural and functional diversity of wheat cystatins and its implication in plant defense.
    Dutt S; Singh VK; Marla SS; Kumar A
    Genomics Proteomics Bioinformatics; 2010 Mar; 8(1):42-56. PubMed ID: 20451161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley.
    Martínez M; Abraham Z; Carbonero P; Díaz I
    Mol Genet Genomics; 2005 Jun; 273(5):423-32. PubMed ID: 15887031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and phylogenetic relationships among plant and animal cystatins.
    Margis R; Reis EM; Villeret V
    Arch Biochem Biophys; 1998 Nov; 359(1):24-30. PubMed ID: 9799556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases.
    Martinez M; Diaz-Mendoza M; Carrillo L; Diaz I
    FEBS Lett; 2007 Jun; 581(16):2914-8. PubMed ID: 17543305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review: Unraveling the origin of the structural and functional diversity of plant cystatins.
    Balbinott N; Margis R
    Plant Sci; 2022 Aug; 321():111342. PubMed ID: 35696902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds.
    Szewińska J; Simińska J; Bielawski W
    J Plant Physiol; 2016 Dec; 207():10-21. PubMed ID: 27771502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional solution structure of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza sativa L. japonica.
    Nagata K; Kudo N; Abe K; Arai S; Tanokura M
    Biochemistry; 2000 Dec; 39(48):14753-60. PubMed ID: 11101290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugarcane cystatins: From discovery to biotechnological applications.
    Shibao PYT; Santos-Júnior CD; Santiago AC; Mohan C; Miguel MC; Toyama D; Vieira MAS; Narayanan S; Figueira A; Carmona AK; Schiermeyer A; Soares-Costa A; Henrique-Silva F
    Int J Biol Macromol; 2021 Jan; 167():676-686. PubMed ID: 33285201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of the second binding loop and the C-terminal end of cystatin B (stefin B) for inhibition of cysteine proteinases.
    Pol E; Björk I
    Biochemistry; 1999 Aug; 38(32):10519-26. PubMed ID: 10441148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diversity of rice phytocystatins.
    Christoff AP; Margis R
    Mol Genet Genomics; 2014 Dec; 289(6):1321-30. PubMed ID: 25098420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional diversity within the cystatin gene family of Hordeum vulgare.
    Abraham Z; Martinez M; Carbonero P; Diaz I
    J Exp Bot; 2006; 57(15):4245-55. PubMed ID: 17099080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural studies of cysteine proteases and their inhibitors.
    Grzonka Z; Jankowska E; Kasprzykowski F; Kasprzykowska R; Lankiewicz L; Wiczk W; Wieczerzak E; Ciarkowski J; Drabik P; Janowski R; Kozak M; Jaskólski M; Grubb A
    Acta Biochim Pol; 2001; 48(1):1-20. PubMed ID: 11440158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of expression and inhibitory activity of a TrcC-6 phytocystatin present in developing and germinating seeds of triticale (×Triticosecale Wittm.).
    Simińska J; Orzechowski S; Bielawski W
    Plant Physiol Biochem; 2015 Nov; 96():209-16. PubMed ID: 26298807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary structure of a cysteine proteinase inhibitor from the fruit of avocado (Persea americana Mill).
    Kimura M; Ikeda T; Fukumoto D; Yamasaki N; Yonekura M
    Biosci Biotechnol Biochem; 1995 Dec; 59(12):2328-9. PubMed ID: 8611758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico approach on sequential and structural variability in oryzacystatin and its interaction with cysteine protease enzymes of insect.
    Premachandran K; Srinivasan TS; Wilson Alphonse CR
    Phytochemistry; 2021 Jun; 186():112728. PubMed ID: 33721793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties.
    Martínez M; López-Solanilla E; Rodríguez-Palenzuela P; Carbonero P; Díaz I
    Mol Plant Microbe Interact; 2003 Oct; 16(10):876-83. PubMed ID: 14558689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The squash aspartic proteinase inhibitor SQAPI is widely present in the cucurbitales, comprises a small multigene family, and is a member of the phytocystatin family.
    Christeller JT; Farley PC; Marshall RK; Anandan A; Wright MM; Newcomb RD; Laing WA
    J Mol Evol; 2006 Dec; 63(6):747-57. PubMed ID: 17103059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant cystatins in plants.
    Tremblay J; Goulet MC; Michaud D
    Biochimie; 2019 Nov; 166():184-193. PubMed ID: 31194996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.