These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26267779)

  • 1. Speciation and persistence of doxycycline in the aquatic environment: Characterization in terms of steady state kinetics.
    Zaranyika MF; Dzomba P; Kugara J
    J Environ Sci Health B; 2015; 50(12):908-18. PubMed ID: 26267779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence and fate of chlortetracycline in the aquatic environment under sub-tropical conditions: generation and dissipation of metabolites.
    Dzomba P; Zaranyika MF
    J Environ Sci Health B; 2021; 56(2):181-187. PubMed ID: 33378246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of cefradine in alga-containing water environment: a mechanism and kinetic study.
    Jiang R; Wei Y; Sun J; Wang J; Zhao Z; Liu Y; Li X; Cao J
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):9184-9192. PubMed ID: 30715707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment.
    Jiang M; Wang L; Ji R
    Chemosphere; 2010 Sep; 80(11):1399-405. PubMed ID: 20579689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of pesticides in water-sediment systems.
    Katagi T
    Rev Environ Contam Toxicol; 2006; 187():133-251. PubMed ID: 16802581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption-desorption of oxytetracycline on marine sediments: Kinetics and influencing factors.
    Li J; Zhang H
    Chemosphere; 2016 Dec; 164():156-163. PubMed ID: 27588574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The behavior of isopyrazam in aquatic ecosystems: implementation of a tiered investigation.
    Hand LH; Oliver RG
    Environ Toxicol Chem; 2010 Dec; 29(12):2702-12. PubMed ID: 20891015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of febantel in the aquatic environment-the role of abiotic elimination processes.
    Babić S; Pavlović DM; Biošić M; Ašperger D; Škorić I; Runje M
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):28917-28927. PubMed ID: 30105676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of antibiotic norfloxacin on the degradation and enantioselectivity of the herbicides in aquatic environment.
    Wang F; Gao J; Zhai W; Cui J; Liu D; Zhou Z; Wang P
    Ecotoxicol Environ Saf; 2021 Jan; 208():111717. PubMed ID: 33396048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic study on the sorption and degradation of antibiotics in the estuarine water: an evaluation based on single and multiple reactions.
    Li J; Cui M
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):42104-42114. PubMed ID: 32705565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies.
    Zhang Y; Li J; Zhou L; Wang G; Feng Y; Wang Z; Yang X
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6982-9. PubMed ID: 26705756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting seasonal fate of phenanthrene in aquatic environment with a Markov chain.
    Sun C; Ma Q; Zhang J; Zhou M; Chen Y
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16661-70. PubMed ID: 27180837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesocosm experiment to determine the contribution of adsorption, biodegradation, hydrolysis and photodegradation in the attenuation of antibiotics at the water sediment interface.
    Chabilan A; Ledesma DGB; Horn H; Borowska E
    Sci Total Environ; 2023 Mar; 866():161385. PubMed ID: 36621511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing kinetics of transport and transformation of selenium in water-sediment microcosm free from selenium contamination using a simple mathematical model.
    Fujita M; Ike M; Hashimoto R; Nakagawa T; Yamaguchi K; Soda SO
    Chemosphere; 2005 Feb; 58(6):705-14. PubMed ID: 15621184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the natural colloidal particles from one freshwater lake on the photochemistry reaction kinetics of ofloxacin and enrofloxacin.
    Cheng D; Liu X; Li J; Feng Y; Wang J; Li Z
    Environ Pollut; 2018 Oct; 241():692-700. PubMed ID: 29902752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation and reactivity of Cisplatin in river water and seawater.
    Curtis L; Turner A; Vyas N; Sewell G
    Environ Sci Technol; 2010 May; 44(9):3345-50. PubMed ID: 20349990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption and photodegradation processes govern distribution and fate of sulfamethazine in freshwater-sediment microcosms.
    Carstens KL; Gross AD; Moorman TB; Coats JR
    Environ Sci Technol; 2013 Oct; 47(19):10877-83. PubMed ID: 23977992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments.
    Lai HT; Lin JJ
    Chemosphere; 2009 Apr; 75(4):462-8. PubMed ID: 19230954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the fate and distribution of methoxyfenozide in a water-plant-fish-sediment microcosm using a multimedia fugacity model.
    Chen Y; Liu X; Dong F; Xu J; Wu X; Zheng Y
    Sci Total Environ; 2021 Feb; 755(Pt 1):142482. PubMed ID: 33011597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets.
    Rostamian R; Behnejad H
    Ecotoxicol Environ Saf; 2018 Jan; 147():117-123. PubMed ID: 28841526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.