These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26267833)

  • 1. Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites.
    Gao Y; Cao D; Liu J; Shen J; Wu Y; Zhang L
    Phys Chem Chem Phys; 2015 Sep; 17(35):22959-68. PubMed ID: 26267833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation.
    Gao Y; Cao D; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Mar; 12(12):3074-83. PubMed ID: 26895557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites with polymer-grafted nanorods.
    Li F; Duan X; Zhang H; Li B; Liu J; Gao Y; Zhang L
    Phys Chem Chem Phys; 2018 Aug; 20(34):21822-21831. PubMed ID: 29987305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolation analysis of the electrical conductive network in a polymer nanocomposite by nanorod functionalization.
    Ma R; Mu G; Zhang H; Liu J; Gao Y; Zhao X; Zhang L
    RSC Adv; 2019 Nov; 9(62):36324-36333. PubMed ID: 35540620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation.
    Gao Y; Liu J; Shen J; Zhang L; Guo Z; Cao D
    Phys Chem Chem Phys; 2014 Aug; 16(30):16039-48. PubMed ID: 24964005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the electrical conductive network formation in nanorod filled polymer nanocomposites by tuning nanorod stiffness.
    Gao Y; Ma R; Zhang H; Liu J; Zhao X; Zhang L
    RSC Adv; 2018 Aug; 8(53):30248-30256. PubMed ID: 35546821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of the formation mechanism of the thermal conductive filler network of polymer nanocomposites.
    Han Y; Li K; Li Z; Liu J; Hu S; Wen S; Liu L; Zhang L
    Phys Chem Chem Phys; 2022 Feb; 24(7):4334-4347. PubMed ID: 35107443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of various nanoparticle shapes on the interfacial chain mobility: a molecular dynamics simulation.
    Gao Y; Liu J; Shen J; Wu Y; Zhang L
    Phys Chem Chem Phys; 2014 Oct; 16(39):21372-82. PubMed ID: 25179543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain.
    Feng Y; Ning N; Zhang L; Tian M; Zou H; Mi J
    J Chem Phys; 2013 Jul; 139(2):024903. PubMed ID: 23862961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation.
    Liu J; Gao Y; Cao D; Zhang L; Guo Z
    Langmuir; 2011 Jun; 27(12):7926-33. PubMed ID: 21595451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect in improving the electrical conductivity in polymer nanocomposites by mixing spherical and rod-shaped fillers.
    Qu F; Sun W; Li B; Li F; Gao Y; Zhao X; Zhang L
    Soft Matter; 2020 Dec; 16(46):10454-10462. PubMed ID: 33057553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization.
    Gao Y; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Dec; 12(48):9738-9748. PubMed ID: 27869283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between dispersion and conductivity of polymer nanocomposites: a molecular dynamics study.
    Feng Y; Zou H; Tian M; Zhang L; Mi J
    J Phys Chem B; 2012 Nov; 116(43):13081-8. PubMed ID: 23057420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of the rupture mechanism in nanorod filled polymer nanocomposites.
    Gao Y; Liu J; Shen J; Cao D; Zhang L
    Phys Chem Chem Phys; 2014 Sep; 16(34):18483-92. PubMed ID: 25072998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.
    Wang Z; Liu J; Wu S; Wang W; Zhang L
    Phys Chem Chem Phys; 2010 Mar; 12(12):3014-30. PubMed ID: 20449394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites by utilizing diblock copolymer-mediated nanoparticles.
    Gao Y; Duan X; Jiang P; Zhang H; Liu J; Wen S; Zhao X; Zhang L
    Soft Matter; 2019 Aug; 15(31):6331-6339. PubMed ID: 31271186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application.
    Kotsilkova R; Ivanov E; Georgiev V; Ivanova R; Menseidov D; Batakliev T; Angelov V; Xia H; Chen Y; Bychanok D; Kuzhir P; Di Maio R; Silvestre C; Cimmino S
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32466410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Percolation in Well-Defined Nanocomposite Thin Films.
    Chang BS; Li C; Dai J; Evans K; Huang J; He M; Hu W; Tian Z; Xu T
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14579-14587. PubMed ID: 35311286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical and physical effects of nanofillers on percolation and electrical conductivity of polymer carbon-based nanocomposites: a general micro-mechanical model.
    Payandehpeyman J; Mazaheri M
    Soft Matter; 2023 Jan; 19(3):530-539. PubMed ID: 36541407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular-dynamics simulation of model polymer nanocomposite rheology and comparison with experiment.
    Kairn T; Daivis PJ; Ivanov I; Bhattacharya SN
    J Chem Phys; 2005 Nov; 123(19):194905. PubMed ID: 16321111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.