These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26267841)

  • 41. A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion level.
    Senapati D; Dasary SS; Singh AK; Senapati T; Yu H; Ray PC
    Chemistry; 2011 Jul; 17(30):8445-51. PubMed ID: 21744401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Additional amplifications of SERS via an optofluidic CD-based platform.
    Choi D; Kang T; Cho H; Choi Y; Lee LP
    Lab Chip; 2009 Jan; 9(2):239-43. PubMed ID: 19107279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reliable plasmonic substrates for bioanalytical SERS applications easily prepared by convective assembly of gold nanocolloids.
    Farcau C; Potara M; Leordean C; Boca S; Astilean S
    Analyst; 2013 Jan; 138(2):546-52. PubMed ID: 23171872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays.
    Wang G; Park HY; Lipert RJ; Porter MD
    Anal Chem; 2009 Dec; 81(23):9643-50. PubMed ID: 19874000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles.
    Zengin A; Tamer U; Caykara T
    Anal Chim Acta; 2014 Mar; 817():33-41. PubMed ID: 24594815
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemoresponsive Colloidosomes via Ag⁺ Soldering of Surface-Assembled Nanoparticle Monolayers.
    Liu M; Tian Q; Li Y; You B; Xu A; Deng Z
    Langmuir; 2015 Apr; 31(16):4589-92. PubMed ID: 25866989
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy.
    Huang J; Zhu Y; Lin M; Wang Q; Zhao L; Yang Y; Yao KX; Han Y
    J Am Chem Soc; 2013 Jun; 135(23):8552-61. PubMed ID: 23675958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein-based SERS technology monitoring the chemical reactivity on an α-synuclein-mediated two-dimensional array of gold nanoparticles.
    Lee D; Choe YJ; Lee M; Jeong DH; Paik SR
    Langmuir; 2011 Nov; 27(21):12782-7. PubMed ID: 21942274
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microarrays of gold nanoparticle clusters fabricated by Stop&Go convective self-assembly for SERS-based sensor chips.
    Farcau C; Sangeetha NM; Decorde N; Astilean S; Ressier L
    Nanoscale; 2012 Dec; 4(24):7870-7. PubMed ID: 23149550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl.
    Wu L; Wang Z; Shen B
    Nanoscale; 2013 Jun; 5(12):5274-8. PubMed ID: 23674317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single nanowire on a film as an efficient SERS-active platform.
    Yoon I; Kang T; Choi W; Kim J; Yoo Y; Joo SW; Park QH; Ihee H; Kim B
    J Am Chem Soc; 2009 Jan; 131(2):758-62. PubMed ID: 19099471
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering.
    Zhang K; Yao S; Li G; Hu Y
    Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen.
    Panikkanvalappil SR; El-Sayed MA
    J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A surface enhanced Raman scattering based colloid nanosensor for developing therapeutic drug monitoring.
    Litti L; Ramundo A; Biscaglia F; Toffoli G; Gobbo M; Meneghetti M
    J Colloid Interface Sci; 2019 Jan; 533():621-626. PubMed ID: 30193149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SERS-based direct and sandwich assay methods for mir-21 detection.
    Guven B; Dudak FC; Boyaci IH; Tamer U; Ozsoz M
    Analyst; 2014 Mar; 139(5):1141-7. PubMed ID: 24418951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering.
    Yang T; Guo X; Wu Y; Wang H; Fu S; Wen Y; Yang H
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20985-93. PubMed ID: 25393238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks.
    Perets EA; Indrasekara AS; Kurmis A; Atlasevich N; Fabris L; Arslanoglu J
    Analyst; 2015 Sep; 140(17):5971-80. PubMed ID: 26171756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.