BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26267886)

  • 1. Robustness and period sensitivity analysis of minimal models for biochemical oscillators.
    Caicedo-Casso A; Kang HW; Lim S; Hong CI
    Sci Rep; 2015 Aug; 5():13161. PubMed ID: 26267886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-controlled oscillations and their bifurcations in coupled phase oscillators.
    Zaks MA; Neiman AB; Feistel S; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066206. PubMed ID: 14754296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity.
    Maeda K; Kurata H
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S1. PubMed ID: 25605374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators.
    Yu N; Kuske R; Li YX
    Chaos; 2008 Mar; 18(1):015112. PubMed ID: 18377093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms and molecular noise.
    Gonze D; Goldbeter A
    Chaos; 2006 Jun; 16(2):026110. PubMed ID: 16822042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long negative feedback loop enhances period tunability of biological oscillators.
    Maeda K; Kurata H
    J Theor Biol; 2018 Mar; 440():21-31. PubMed ID: 29253507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedback, Mass Conservation and Reaction Kinetics Impact the Robustness of Cellular Oscillations.
    Baum K; Politi AZ; Kofahl B; Steuer R; Wolf J
    PLoS Comput Biol; 2016 Dec; 12(12):e1005298. PubMed ID: 28027301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysing the robustness of cellular rhythms.
    Wolf J; Becker-Weimann S; Heinrich R
    Syst Biol (Stevenage); 2005 Mar; 2(1):35-41. PubMed ID: 17091581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching between oscillations and homeostasis in competing negative and positive feedback motifs.
    Li W; Krishna S; Pigolotti S; Mitarai N; Jensen MH
    J Theor Biol; 2012 Aug; 307():205-10. PubMed ID: 22762992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic noise and division cycle effects on an abstract biological oscillator.
    Stamatakis M; Mantzaris NV
    Chaos; 2010 Sep; 20(3):033118. PubMed ID: 20887058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design principles of biochemical oscillators.
    Novák B; Tyson JJ
    Nat Rev Mol Cell Biol; 2008 Dec; 9(12):981-91. PubMed ID: 18971947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness of circadian rhythms with respect to molecular noise.
    Gonze D; Halloy J; Goldbeter A
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):673-8. PubMed ID: 11792856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic negative feedback systems: what is the chance of oscillation?
    Tonnelier A
    Bull Math Biol; 2014 May; 76(5):1155-93. PubMed ID: 24756857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Statistical Approach Reveals Designs for the Most Robust Stochastic Gene Oscillators.
    Woods ML; Leon M; Perez-Carrasco R; Barnes CP
    ACS Synth Biol; 2016 Jun; 5(6):459-70. PubMed ID: 26835539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the effect of cell division on genetic oscillators.
    Gonze D
    J Theor Biol; 2013 May; 325():22-33. PubMed ID: 23434891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of circadian oscillatory network models of Drosophila.
    Ogawa Y; Arakawa K; Kaizu K; Miyoshi F; Nakayama Y; Tomita M
    Artif Life; 2008; 14(1):29-48. PubMed ID: 18171129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative performance metrics for robustness in circadian rhythms.
    Bagheri N; Stelling J; Doyle FJ
    Bioinformatics; 2007 Feb; 23(3):358-64. PubMed ID: 17158515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of molecular circadian clocks: multiple mechanisms for phase shifting and a requirement for strong nonlinear interactions.
    Scheper TO; Klinkenberg D; van Pelt J; Pennartz C
    J Biol Rhythms; 1999 Jun; 14(3):213-20. PubMed ID: 10452333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.
    Chen BS; Hsu CY
    BMC Syst Biol; 2012 Oct; 6():136. PubMed ID: 23101662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal noise-driven circadian oscillator in Drosophila.
    Li Q; Li H
    Biophys Chem; 2009 Dec; 145(2-3):57-63. PubMed ID: 19781844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.