These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 26268369)

  • 1. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning.
    Maheshwari S; Brylinski M
    J Mol Recognit; 2015 Jan; 28(1):35-48. PubMed ID: 26268369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands.
    Brylinski M; Feinstein WP
    J Comput Aided Mol Des; 2013 Jun; 27(6):551-67. PubMed ID: 23838840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. eFindSite: Enhanced Fingerprint-Based Virtual Screening Against Predicted Ligand Binding Sites in Protein Models.
    Feinstein WP; Brylinski M
    Mol Inform; 2014 Feb; 33(2):135-50. PubMed ID: 27485570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-based identification of protein-protein interfaces using eFindSitePPI.
    Maheshwari S; Brylinski M
    Methods; 2016 Jan; 93():64-71. PubMed ID: 26235816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unleashing the power of meta-threading for evolution/structure-based function inference of proteins.
    Brylinski M
    Front Genet; 2013; 4():118. PubMed ID: 23802014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. eThread: a highly optimized machine learning-based approach to meta-threading and the modeling of protein tertiary structures.
    Brylinski M; Lingam D
    PLoS One; 2012; 7(11):e50200. PubMed ID: 23185577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
    Neuvirth H; Raz R; Schreiber G
    J Mol Biol; 2004 Apr; 338(1):181-99. PubMed ID: 15050833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches.
    Liu R; Hu J
    Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation.
    Brylinski M; Skolnick J
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):129-34. PubMed ID: 18165317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the druggability of the human proteome with eFindSite.
    Kana O; Brylinski M
    J Comput Aided Mol Des; 2019 May; 33(5):509-519. PubMed ID: 30888556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading.
    Lu L; Lu H; Skolnick J
    Proteins; 2002 Nov; 49(3):350-64. PubMed ID: 12360525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures.
    Liu GH; Shen HB; Yu DJ
    J Membr Biol; 2016 Apr; 249(1-2):141-53. PubMed ID: 26563228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking of dimeric threading and structure refinement.
    Grimm V; Zhang Y; Skolnick J
    Proteins; 2006 May; 63(3):457-65. PubMed ID: 16463265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm.
    Skolnick J; Kihara D; Zhang Y
    Proteins; 2004 Aug; 56(3):502-18. PubMed ID: 15229883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does inclusion of residue-residue contact information boost protein threading?
    Bhattacharya S; Bhattacharya D
    Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.
    Yang X; Wang J; Sun J; Liu R
    PLoS One; 2015; 10(7):e0133260. PubMed ID: 26176857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.