These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26268438)

  • 1. NanoCAGE-XL and CapFilter: an approach to genome wide identification of high confidence transcription start sites.
    Cumbie JS; Ivanchenko MG; Megraw M
    BMC Genomics; 2015 Aug; 16(1):597. PubMed ID: 26268438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NanoCAGE-XL: An Approach to High-Confidence Transcription Start Site Sequencing.
    Ivanchenko MG; Megraw M
    Methods Mol Biol; 2018; 1830():225-237. PubMed ID: 30043373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paired-end analysis of transcription start sites in Arabidopsis reveals plant-specific promoter signatures.
    Morton T; Petricka J; Corcoran DL; Li S; Winter CM; Carda A; Benfey PN; Ohler U; Megraw M
    Plant Cell; 2014 Jul; 26(7):2746-60. PubMed ID: 25035402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NanoCAGE: A Method for the Analysis of Coding and Noncoding 5'-Capped Transcriptomes.
    Poulain S; Kato S; Arnaud O; Morlighem JÉ; Suzuki M; Plessy C; Harbers M
    Methods Mol Biol; 2017; 1543():57-109. PubMed ID: 28349422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of Arabidopsis core promoters revealed by high-density TSS analysis.
    Yamamoto YY; Yoshitsugu T; Sakurai T; Seki M; Shinozaki K; Obokata J
    Plant J; 2009 Oct; 60(2):350-62. PubMed ID: 19563441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GC-compositional strand bias around transcription start sites in plants and fungi.
    Fujimori S; Washio T; Tomita M
    BMC Genomics; 2005 Feb; 6():26. PubMed ID: 15733327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.
    Kumari S; Ware D
    PLoS One; 2013; 8(10):e79011. PubMed ID: 24205361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Searching for bidirectional promoters in Arabidopsis thaliana.
    Wang Q; Wan L; Li D; Zhu L; Qian M; Deng M
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S29. PubMed ID: 19208129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Arabidopsis genic and non-genic promoters by paired-end sequencing of TSS tags.
    Tokizawa M; Kusunoki K; Koyama H; Kurotani A; Sakurai T; Suzuki Y; Sakamoto T; Kurata T; Yamamoto YY
    Plant J; 2017 May; 90(3):587-605. PubMed ID: 28214361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a DNA barcode tagging method for monitoring dynamic changes in gene expression by using an ultra high-throughput sequencer.
    Maeda N; Nishiyori H; Nakamura M; Kawazu C; Murata M; Sano H; Hayashida K; Fukuda S; Tagami M; Hasegawa A; Murakami K; Schroder K; Irvine K; Hume D; Hayashizaki Y; Carninci P; Suzuki H
    Biotechniques; 2008 Jul; 45(1):95-7. PubMed ID: 18611171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.
    Mejía-Guerra MK; Li W; Galeano NF; Vidal M; Gray J; Doseff AI; Grotewold E
    Plant Cell; 2015 Dec; 27(12):3309-20. PubMed ID: 26628745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of core promoter types with respect to gene structure and expression in Arabidopsis thaliana.
    Yamamoto YY; Yoshioka Y; Hyakumachi M; Obokata J
    DNA Res; 2011 Oct; 18(5):333-42. PubMed ID: 21745829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana.
    Walther D; Brunnemann R; Selbig J
    PLoS Genet; 2007 Feb; 3(2):e11. PubMed ID: 17291162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cap Analysis of Gene Expression (CAGE): A Quantitative and Genome-Wide Assay of Transcription Start Sites.
    Morioka MS; Kawaji H; Nishiyori-Sueki H; Murata M; Kojima-Ishiyama M; Carninci P; Itoh M
    Methods Mol Biol; 2020; 2120():277-301. PubMed ID: 32124327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Prediction of Transcription Start Sites in Conifers.
    Bondar EI; Troukhan ME; Krutovsky KV; Tatarinova TV
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide TSS Identification in Maize.
    Mejia-Guerra MK; Li W; Doseff AI; Grotewold E
    Methods Mol Biol; 2018; 1830():239-256. PubMed ID: 30043374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.
    Cokus SJ; Feng S; Zhang X; Chen Z; Merriman B; Haudenschild CD; Pradhan S; Nelson SF; Pellegrini M; Jacobsen SE
    Nature; 2008 Mar; 452(7184):215-9. PubMed ID: 18278030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis.
    Pass DA; Sornay E; Marchbank A; Crawford MR; Paszkiewicz K; Kent NA; Murray JAH
    PLoS Genet; 2017 Sep; 13(9):e1006988. PubMed ID: 28902852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ARF-TSS: an alternative method for identification of transcription start site in bacteria.
    Wang C; Lee J; Deng Y; Tao F; Zhang LH
    Biotechniques; 2012 Apr; 52(4):. PubMed ID: 26307248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nascent Transcript Sequencing for the Mapping of Promoters in Arabidopsis thaliana Mitochondria.
    Saleh O; Dwiani S; Rott J; Kühn K
    Methods Mol Biol; 2022; 2363():279-300. PubMed ID: 34545499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.