BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26268609)

  • 1. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.
    Scheib U; Stehfest K; Gee CE; Körschen HG; Fudim R; Oertner TG; Hegemann P
    Sci Signal; 2015 Aug; 8(389):rs8. PubMed ID: 26268609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.
    Gao S; Nagpal J; Schneider MW; Kozjak-Pavlovic V; Nagel G; Gottschalk A
    Nat Commun; 2015 Sep; 6():8046. PubMed ID: 26345128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.
    Avelar GM; Schumacher RI; Zaini PA; Leonard G; Richards TA; Gomes SL
    Curr Biol; 2014 Jun; 24(11):1234-40. PubMed ID: 24835457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii.
    Avelar GM; Glaser T; Leonard G; Richards TA; Ulrich H; Gomes SL
    Eukaryot Cell; 2015 Sep; 14(9):958-63. PubMed ID: 26150416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The inner mechanics of rhodopsin guanylyl cyclase during cGMP-formation revealed by real-time FTIR spectroscopy.
    Fischer P; Mukherjee S; Schiewer E; Broser M; Bartl F; Hegemann P
    Elife; 2021 Oct; 10():. PubMed ID: 34665128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of a Ca(2+)-(*)NO-cGMP signaling pathway controlling zoospore biogenesis in the aquatic fungus Blastocladiella emersonii.
    Vieira AL; Linares E; Augusto O; Gomes SL
    Fungal Genet Biol; 2009 Aug; 46(8):575-84. PubMed ID: 19393757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and monomer/dimer equilibrium for the guanylyl cyclase domain of the optogenetics protein RhoGC.
    Kumar RP; Morehouse BR; Fofana J; Trieu MM; Zhou DH; Lorenz MO; Oprian DD
    J Biol Chem; 2017 Dec; 292(52):21578-21589. PubMed ID: 29118188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain.
    Scheib U; Broser M; Constantin OM; Yang S; Gao S; Mukherjee S; Stehfest K; Nagel G; Gee CE; Hegemann P
    Nat Commun; 2018 May; 9(1):2046. PubMed ID: 29799525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for GTP recognition by light-activated guanylate cyclase RhGC.
    Butryn A; Raza H; Rada H; Moraes I; Owens RJ; Orville AM
    FEBS J; 2020 Jul; 287(13):2797-2807. PubMed ID: 31808997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus
    Trieu MM; Devine EL; Lamarche LB; Ammerman AE; Greco JA; Birge RR; Theobald DL; Oprian DD
    J Biol Chem; 2017 Jun; 292(25):10379-10389. PubMed ID: 28473465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A light-sensing system in the common ancestor of the fungi.
    Galindo LJ; Milner DS; Gomes SL; Richards TA
    Curr Biol; 2022 Jul; 32(14):3146-3153.e3. PubMed ID: 35675809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of guanylate cyclase activity during cytodifferentiation of Blastocladiella emersonii.
    Silverman PM
    Biochem Biophys Res Commun; 1976 May; 70(2):381-8. PubMed ID: 7248
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
    Tsunoda SP; Sugiura M; Kandori H
    Adv Exp Med Biol; 2021; 1293():153-165. PubMed ID: 33398812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic manipulation of cyclic guanosine monophosphate to probe phosphodiesterase activities in megakaryocytes.
    Zhang Y; Benz P; Stehle D; Yang S; Kurz H; Feil S; Nagel G; Feil R; Gao S; Bender M
    Open Biol; 2022 Aug; 12(8):220058. PubMed ID: 35975649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway.
    Wunder F; Stasch JP; Hütter J; Alonso-Alija C; Hüser J; Lohrmann E
    Anal Biochem; 2005 Apr; 339(1):104-12. PubMed ID: 15766716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae.
    Penzkofer A; Scheib U; Stehfest K; Hegemann P
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 28981475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative EST analysis provides insights into the basal aquatic fungus Blastocladiella emersonii.
    Ribichich KF; Georg RC; Gomes SL
    BMC Genomics; 2006 Jul; 7():177. PubMed ID: 16836762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cell-based nitric oxide reporter assay useful for the identification and characterization of modulators of the nitric oxide/guanosine 3',5'-cyclic monophosphate pathway.
    Wunder F; Buehler G; Hüser J; Mundt S; Bechem M; Kalthof B
    Anal Biochem; 2007 Apr; 363(2):219-27. PubMed ID: 17336915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An innovative cell-based assay for the detection of modulators of soluble guanylate cyclase.
    Corazza S; Scarabottolo L; Lohmer S; Liberati C
    Assay Drug Dev Technol; 2006 Apr; 4(2):165-73. PubMed ID: 16712420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools.
    Tanwar M; Sharma K; Moar P; Kateriya S
    Appl Biochem Biotechnol; 2018 Aug; 185(4):1014-1028. PubMed ID: 29404907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.