BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26268927)

  • 1. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis.
    Shi Z; Wang F; Cui Y; Liu Z; Guo X; Zhang Y; Deng Y; Zhao H; Chen Y
    FASEB J; 2015 Dec; 29(12):4914-23. PubMed ID: 26268927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cas9-based genome editing in Xenopus tropicalis.
    Nakayama T; Blitz IL; Fish MB; Odeleye AO; Manohar S; Cho KW; Grainger RM
    Methods Enzymol; 2014; 546():355-75. PubMed ID: 25398349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis.
    Mao CZ; Zheng L; Zhou YM; Wu HY; Xia JB; Liang CQ; Guo XF; Peng WT; Zhao H; Cai WB; Kim SK; Park KS; Cai DQ; Qi XF
    FASEB J; 2018 Jun; ():fj201800093. PubMed ID: 29897811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Knock-Ins in
    Bosch JA; Colbeth R; Zirin J; Perrimon N
    Genetics; 2020 Jan; 214(1):75-89. PubMed ID: 31685521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An expanded toolkit for
    Kanca O; Zirin J; Hu Y; Tepe B; Dutta D; Lin WW; Ma L; Ge M; Zuo Z; Liu LP; Levis RW; Perrimon N; Bellen HJ
    Elife; 2022 Jun; 11():. PubMed ID: 35723254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CRISPR-Cas9-mediated versatile method for targeted integration of a fluorescent protein gene to visualize endogenous gene expression in Xenopus laevis.
    Mochii M; Akizuki K; Ossaka H; Kagawa N; Umesono Y; Suzuki KT
    Dev Biol; 2024 Feb; 506():42-51. PubMed ID: 38052295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes.
    Diao F; Ironfield H; Luan H; Diao F; Shropshire WC; Ewer J; Marr E; Potter CJ; Landgraf M; White BH
    Cell Rep; 2015 Mar; 10(8):1410-21. PubMed ID: 25732830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling human genetic disorders in Xenopus tropicalis.
    Willsey HR; Seaby EG; Godwin A; Ennis S; Guille M; Grainger RM
    Dis Model Mech; 2024 May; 17(5):. PubMed ID: 38832520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus.
    Bhattacharya D; Marfo CA; Li D; Lane M; Khokha MK
    Dev Biol; 2015 Dec; 408(2):196-204. PubMed ID: 26546975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function.
    Guo Y; Xu Q; Canzio D; Shou J; Li J; Gorkin DU; Jung I; Wu H; Zhai Y; Tang Y; Lu Y; Wu Y; Jia Z; Li W; Zhang MQ; Ren B; Krainer AR; Maniatis T; Wu Q
    Cell; 2015 Aug; 162(4):900-10. PubMed ID: 26276636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing.
    Vartak SV; Raghavan SC
    FEBS J; 2015 Nov; 282(22):4289-94. PubMed ID: 26290158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries.
    Vidigal JA; Ventura A
    Nat Commun; 2015 Aug; 6():8083. PubMed ID: 26278926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs.
    Wang X; Zhou J; Cao C; Huang J; Hai T; Wang Y; Zheng Q; Zhang H; Qin G; Miao X; Wang H; Cao S; Zhou Q; Zhao J
    Sci Rep; 2015 Aug; 5():13348. PubMed ID: 26293209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System.
    Yin L; Jao LE; Chen W
    Methods Mol Biol; 2015; 1332():205-17. PubMed ID: 26285757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing.
    Robert F; Barbeau M; Éthier S; Dostie J; Pelletier J
    Genome Med; 2015 Aug; 7(1):93. PubMed ID: 26307031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing.
    Sun W; Ji W; Hall JM; Hu Q; Wang C; Beisel CL; Gu Z
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):12029-33. PubMed ID: 26310292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat?
    Webber BL; Raghu S; Edwards OR
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10565-7. PubMed ID: 26272924
    [No Abstract]   [Full Text] [Related]  

  • 19. CRISPR mediated somatic cell genome engineering in the chicken.
    Véron N; Qu Z; Kipen PA; Hirst CE; Marcelle C
    Dev Biol; 2015 Nov; 407(1):68-74. PubMed ID: 26277216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo.
    Moreno-Mateos MA; Vejnar CE; Beaudoin JD; Fernandez JP; Mis EK; Khokha MK; Giraldez AJ
    Nat Methods; 2015 Oct; 12(10):982-8. PubMed ID: 26322839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.