These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26269005)

  • 1. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.
    Meyer DD; Andrino FG; Possedente de Lira S; Fornaro A; Corção G; Brandelli A
    Environ Technol; 2016; 37(6):768-73. PubMed ID: 26269005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation.
    Thomas D; Barbey R; Henry D; Surdin-Kerjan Y
    J Gen Microbiol; 1992 Oct; 138(10):2021-8. PubMed ID: 1479340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria.
    Sorokin DY; Robertson LA; Kuenen JG
    Antonie Van Leeuwenhoek; 2000 Apr; 77(3):251-62. PubMed ID: 15188891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of sulphate transport defective mutants of Candida utilis: further evidence for a common transport system for sulphate, sulphite and thiosulphate.
    García M; Benítez J; Delgado J; Kotyk A
    Folia Microbiol (Praha); 1983; 28(1):1-5. PubMed ID: 6682073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate.
    Brunner B; Einsiedl F; Arnold GL; Müller I; Templer S; Bernasconi SM
    Isotopes Environ Health Stud; 2012; 48(1):33-54. PubMed ID: 22128782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Growth of Ectothiorhodospira shaposhnikovii on media with various sulfur compounds].
    Kondrat'eva EN; Krasil'nikova EN
    Mikrobiologiia; 1979; 48(2):194-201. PubMed ID: 440157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of oxidation of inorganic sulphur compounds in upper soil horizons of spruce forests.
    Lettl A; Langkramer O; Lochman V
    Folia Microbiol (Praha); 1981; 26(1):24-8. PubMed ID: 7203284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulphate transport in Candida utilis.
    Benítez JA; Alonso A; Delgado J; Kotyk A
    Folia Microbiol (Praha); 1983; 28(1):6-11. PubMed ID: 6682074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inorganic sulphate, sulphite and sulphide as sulphur donors in the biosynthesis of sulphur amino acids in germ-free and conventional rats.
    Huovinen JA; Gustafsson BE
    Biochim Biophys Acta; 1967 Apr; 136(3):441-7. PubMed ID: 6048261
    [No Abstract]   [Full Text] [Related]  

  • 10. Some factors influencing production of sulphate by oxidation of elemental sulphur and thiosulphate in upper horizons of spruce forest soils.
    Lettl A; Langkramer O; Lochman V
    Folia Microbiol (Praha); 1981; 26(2):158-63. PubMed ID: 6266935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transport of H+ in mitochondria induced by the uptake of sulfite, sulfate and thiosulfate].
    Stipani I; Bonvino V; Schiavulli N; Palmieri F
    Boll Soc Ital Biol Sper; 1981 Jul; 57(13):1430-6. PubMed ID: 6269561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.
    Suarez-Zuluaga DA; Weijma J; Timmers PH; Buisman CJ
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3697-704. PubMed ID: 25256585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flavoprotein SoxF functions in chemotrophic thiosulfate oxidation of Paracoccus pantotrophus in vivo and in vitro.
    Bardischewsky F; Quentmeier A; Friedrich CG
    FEMS Microbiol Lett; 2006 May; 258(1):121-6. PubMed ID: 16630266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils.
    Xia FF; Su Y; Wei XM; He YH; Wu ZC; Ghulam A; He R
    Lett Appl Microbiol; 2014 Jul; 59(1):26-34. PubMed ID: 24576086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of tetrathionate, trithionate and thiosulphate, and oxidation of sulphide in proteus mirabilis.
    Oltmann LF; Stouthamer AH
    Arch Microbiol; 1975 Oct; 105(2):135-42. PubMed ID: 1106343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of sulphide and nitrate removal from synthetic wastewater by pure and mixed cultures of nitrate-reducing, sulphide-oxidizing bacteria.
    Watsuntorn W; Ruangchainikom C; Rene ER; Lens PNL; Chulalaksananukul W
    Bioresour Technol; 2019 Jan; 272():40-47. PubMed ID: 30308406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of some sulphur compounds on soil microflora of spruce rhizosphere.
    Lettl A
    Folia Microbiol (Praha); 1981; 26(3):243-52. PubMed ID: 7274844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sulfate transport across the limiting double membrane or envelope, of spinach chloroplasts].
    Mourioux G; Douce R
    Biochimie; 1979; 61(11-12):1283-92. PubMed ID: 540107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant Sox Enzymes from Paracoccus pantotrophus Degrade Hydrogen Sulfide, a Major Component of Oral Malodor.
    Ramadhani A; Kawada-Matsuo M; Komatsuzawa H; Oho T
    Microbes Environ; 2017 Mar; 32(1):54-60. PubMed ID: 28260736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR).
    Krishnakumar B; Majumdar S; Manilal VB; Haridas A
    Water Res; 2005 Feb; 39(4):639-47. PubMed ID: 15707637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.