These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 26269111)
1. Transcriptome Analysis of Invasive Plants in Response to Mineral Toxicity of Reclaimed Coal-Mine Soil in the Appalachian Region. Saminathan T; Malkaram SA; Patel D; Taylor K; Hass A; Nimmakayala P; Huber DH; Reddy UK Environ Sci Technol; 2015 Sep; 49(17):10320-9. PubMed ID: 26269111 [TBL] [Abstract][Full Text] [Related]
2. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Rana V; Maiti SK Environ Sci Pollut Res Int; 2018 Apr; 25(10):9745-9758. PubMed ID: 29368202 [TBL] [Abstract][Full Text] [Related]
3. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
4. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China. Yang SX; Liao B; Yang ZH; Chai LY; Li JT Sci Total Environ; 2016 Aug; 562():427-434. PubMed ID: 27100018 [TBL] [Abstract][Full Text] [Related]
5. Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza. Rivera-Becerril F; Juárez-Vázquez LV; Hernández-Cervantes SC; Acevedo-Sandoval OA; Vela-Correa G; Cruz-Chávez E; Moreno-Espíndola IP; Esquivel-Herrera A; de León-González F Arch Environ Contam Toxicol; 2013 Feb; 64(2):219-27. PubMed ID: 23124167 [TBL] [Abstract][Full Text] [Related]
6. Response of spontaneous plants from an ex-mining site of Elba island (Tuscany, Italy) to metal(loid) contamination. Pistelli L; D'Angiolillo F; Morelli E; Basso B; Rosellini I; Posarelli M; Barbafieri M Environ Sci Pollut Res Int; 2017 Mar; 24(8):7809-7820. PubMed ID: 28130721 [TBL] [Abstract][Full Text] [Related]
7. The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site. Lorestani B; Cheraghi M; Yousefi N Int J Phytoremediation; 2012 Sep; 14(8):786-95. PubMed ID: 22908644 [TBL] [Abstract][Full Text] [Related]
8. Long term growth of crop plants on experimental plots created among slag heaps. Halecki W; Klatka S Ecotoxicol Environ Saf; 2018 Jan; 147():86-92. PubMed ID: 28837874 [TBL] [Abstract][Full Text] [Related]
9. Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil. Boda RK; Majeti NVP; Suthari S Environ Sci Pollut Res Int; 2017 Aug; 24(24):19955-19964. PubMed ID: 28689290 [TBL] [Abstract][Full Text] [Related]
10. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland. Yang SX; Liao B; Li JT; Guo T; Shu WS Chemosphere; 2010 Aug; 80(8):852-9. PubMed ID: 20580409 [TBL] [Abstract][Full Text] [Related]
11. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China. Yakun S; Xingmin M; Kairong L; Hongbo S Environ Sci Pollut Res Int; 2016 Jul; 23(13):13489-97. PubMed ID: 27025220 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil. Khan SR; Singh SK; Rastogi N Environ Monit Assess; 2017 Apr; 189(4):195. PubMed ID: 28357721 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
14. Effect of coal mine soil contamination on the elemental uptake and distribution in two edible Amaranthus species, A. dubius and A. hybridus. Jonnalagadda SB; Kindness A; Chunilall V J Environ Sci Health B; 2006; 41(5):747-64. PubMed ID: 16785180 [TBL] [Abstract][Full Text] [Related]
15. Exploring the role of soil geochemistry on Mn and Ca uptake on 75-year-old mine spoils in western Massachusetts, USA. Jordan J; Cernak RS; Richardson JB Environ Geochem Health; 2019 Dec; 41(6):2763-2775. PubMed ID: 31172408 [TBL] [Abstract][Full Text] [Related]
16. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Sainger PA; Dhankhar R; Sainger M; Kaushik A; Singh RP Ecotoxicol Environ Saf; 2011 Nov; 74(8):2284-91. PubMed ID: 21820739 [TBL] [Abstract][Full Text] [Related]
17. Nutrient concentrations in tree leaves on brown and gray reclaimed mine soils in West Virginia. Wilson-Kokes L; Skousen J Sci Total Environ; 2014 May; 481():418-24. PubMed ID: 24631603 [TBL] [Abstract][Full Text] [Related]
18. Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. Thavamani P; Samkumar RA; Satheesh V; Subashchandrabose SR; Ramadass K; Naidu R; Venkateswarlu K; Megharaj M Environ Pollut; 2017 Nov; 230():495-505. PubMed ID: 28688926 [TBL] [Abstract][Full Text] [Related]
19. Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. Husain R; Weeden H; Bogush D; Deguchi M; Soliman M; Potlakayala S; Katam R; Goldman S; Rudrabhatla S PLoS One; 2019; 14(8):e0221570. PubMed ID: 31465423 [TBL] [Abstract][Full Text] [Related]
20. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]