These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26269230)

  • 81. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 82. 3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming.
    Ming T; Jin B; Song J; Luo H; Du R; Ding Y
    PLoS Comput Biol; 2019 Sep; 15(9):e1006883. PubMed ID: 31487282
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Arm coordination, power, and swim efficiency in national and regional front crawl swimmers.
    Seifert L; Toussaint HM; Alberty M; Schnitzler C; Chollet D
    Hum Mov Sci; 2010 Jun; 29(3):426-39. PubMed ID: 20430465
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Force and torque-free helical tail robot to study low Reynolds number micro-organism swimming.
    Das A; Styslinger M; Harris DM; Zenit R
    Rev Sci Instrum; 2022 Apr; 93(4):044103. PubMed ID: 35489898
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Simulations of optimized anguilliform swimming.
    Kern S; Koumoutsakos P
    J Exp Biol; 2006 Dec; 209(Pt 24):4841-57. PubMed ID: 17142673
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Resistive thrust production can be as crucial as added mass mechanisms for inertial undulatory swimmers.
    Piñeirua M; Godoy-Diana R; Thiria B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):021001. PubMed ID: 26382334
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Age matters: Developmental stage of Danio rerio larvae influences photomotor response thresholds to diazinion or diphenhydramine.
    Kristofco LA; Cruz LC; Haddad SP; Behra ML; Chambliss CK; Brooks BW
    Aquat Toxicol; 2016 Jan; 170():344-354. PubMed ID: 26431593
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Robot motor learning shows emergence of frequency-modulated, robust swimming with an invariant Strouhal number.
    Deng H; Li D; Nitroy C; Wertz A; Priya S; Cheng B
    J R Soc Interface; 2024 Mar; 21(212):20240036. PubMed ID: 38531411
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Hydrodynamics optimization in butterfly swimming: position, drag coefficient and performance.
    Taïar R; Sagnes P; Henry C; Dufour AB; Rouard AH
    J Biomech; 1999 Aug; 32(8):803-10. PubMed ID: 10433422
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Buoyancy is the primary source of generating bodyroll in front-crawl swimming.
    Yanai T
    J Biomech; 2004 May; 37(5):605-12. PubMed ID: 15046989
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish.
    Buss RR; Drapeau P
    J Neurophysiol; 2001 Jul; 86(1):197-210. PubMed ID: 11431502
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A Model of Rowing Propulsion and the Ontogeny of Locomotion in Artemia Larvae.
    Williams TA
    Biol Bull; 1994 Oct; 187(2):164-173. PubMed ID: 29281382
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture.
    Budick SA; O'Malley DM
    J Exp Biol; 2000 Sep; 203(Pt 17):2565-79. PubMed ID: 10934000
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effect of body stiffness distribution on larval fish-like efficient undulatory swimming.
    Wang T; Ren Z; Hu W; Li M; Sitti M
    Sci Adv; 2021 May; 7(19):. PubMed ID: 33952525
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The evolution of larval morphology and swimming performance in ascidians.
    McHenry MJ; Patek SN
    Evolution; 2004 Jun; 58(6):1209-24. PubMed ID: 15266971
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.
    Tytell ED; Hsu CY; Williams TL; Cohen AH; Fauci LJ
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19832-7. PubMed ID: 21037110
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Mechanics of undulatory swimming in a frictional fluid.
    Ding Y; Sharpe SS; Masse A; Goldman DI
    PLoS Comput Biol; 2012; 8(12):e1002810. PubMed ID: 23300407
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio).
    Fiaz AW; Léon-Kloosterziel KM; Gort G; Schulte-Merker S; van Leeuwen JL; Kranenbarg S
    PLoS One; 2012; 7(4):e34072. PubMed ID: 22529905
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina.
    Gore M; Burggren WW
    Front Physiol; 2012; 3():35. PubMed ID: 22375123
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Swimming speed of larval snail does not correlate with size and ciliary beat frequency.
    Chan KY; Jiang H; Padilla DK
    PLoS One; 2013; 8(12):e82764. PubMed ID: 24367554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.