These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2626939)

  • 1. Incident light optical sectioning microscope for visualization of cellular structures in the inner ear.
    Koester CJ; Khanna SM; Rosskothen H; Tackaberry RB
    Acta Otolaryngol Suppl; 1989; 467():27-33. PubMed ID: 2626939
    [No Abstract]   [Full Text] [Related]  

  • 2. Integration of the optical sectioning microscope and heterodyne interferometer for vibration measurements.
    Khanna SM; Koester CJ; van Netten SM
    Acta Otolaryngol Suppl; 1989; 467():43-9. PubMed ID: 2626941
    [No Abstract]   [Full Text] [Related]  

  • 3. Measurement of optical reflectivity in cells of the inner ear.
    Khanna SM; Willemin JF; Ulfendahl M
    Acta Otolaryngol Suppl; 1989; 467():69-75. PubMed ID: 2626944
    [No Abstract]   [Full Text] [Related]  

  • 4. Cellular organization of the guinea pig's cochlea.
    Kelly JP
    Acta Otolaryngol Suppl; 1989; 467():97-112. PubMed ID: 2626947
    [No Abstract]   [Full Text] [Related]  

  • 5. Morphometry of the apical turn of the guinea pig's cochlea.
    Kelly JP
    Acta Otolaryngol Suppl; 1989; 467():113-22. PubMed ID: 2626919
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanical design of the measurement and micropositioning systems.
    Khanna SM; Rosskothen H; Koester CJ
    Acta Otolaryngol Suppl; 1989; 467():51-9. PubMed ID: 2626942
    [No Abstract]   [Full Text] [Related]  

  • 7. Interpretation of cochlear structures visualized with optical sectioning microscopy.
    Kelly JP; Khanna SM; Flock A; Ulfendahl M
    Acta Otolaryngol Suppl; 1989; 467():123-9. PubMed ID: 2626920
    [No Abstract]   [Full Text] [Related]  

  • 8. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.
    Desai DB; Aldawsari MM; Alharbi BM; Sen S; Grave de Peralta L
    Appl Opt; 2015 Sep; 54(25):7781-8. PubMed ID: 26368905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinction between some saccharides in scattered optical sum frequency intensity images.
    Mizutani G; Koyama T; Tomizawa S; Sano H
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):845-9. PubMed ID: 16303630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction.
    Hofman R; Segenhout JM; Wit HP
    J Microsc; 2009 Feb; 233(2):251-7. PubMed ID: 19220691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organ of Corti: observation technique in the living animal.
    Manley GA; Kronester-Frei A
    Hear Res; 1980 Jan; 2(1):87-91. PubMed ID: 7351394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy.
    Davis BJ; Ralston TS; Marks DL; Boppart SA; Carney PS
    Opt Lett; 2007 Jun; 32(11):1441-3. PubMed ID: 17546148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray irradiation of the inner ear of the guinea pig. An electron microscopic study of the degenerating outer hair cells of the organ of Corti.
    Winther FO
    Acta Otolaryngol; 1970; 69(1):61-76. PubMed ID: 5446609
    [No Abstract]   [Full Text] [Related]  

  • 14. [Pseudo-three dimensional observation of the organ of Corti in the guinea pig using scanning electron microscopy].
    Rogowski M; Reiss G
    Otolaryngol Pol; 1994; 48(4):391-7. PubMed ID: 7970787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some surface views of the inner ear by light microscopy.
    Katagiri S; Kawamoto K; Hori K; Watanuki K
    Acta Otolaryngol; 1968 Dec; 66(6):493-507. PubMed ID: 4184146
    [No Abstract]   [Full Text] [Related]  

  • 16. Optical sectioning characteristics of the heterodyne interferometer.
    Khanna SM; Koester CJ
    Acta Otolaryngol Suppl; 1989; 467():61-7. PubMed ID: 2626943
    [No Abstract]   [Full Text] [Related]  

  • 17. Microscope alignment.
    Friedman MM; Abramowitz M
    Curr Protoc Cytom; 2001 May; Chapter 2():Unit 2.7. PubMed ID: 18770701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation on the organ of Corti with scanning electron microscope.
    Kosaka N; Tanaka T; Takiguchi T; Ozeki Y; Takahara S
    Acta Otolaryngol; 1971 Dec; 72(6):377-84. PubMed ID: 5135490
    [No Abstract]   [Full Text] [Related]  

  • 19. Microscope spectrometer for light scattering investigations.
    Barbara A; Lopez-Rios T; Dumont S; Gay F; Quémerais P
    Appl Opt; 2010 Aug; 49(22):4193-201. PubMed ID: 20676173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential two-signal picosecond-pulse coherent anti-Stokes Raman scattering imaging microscopy by using a dual-mode optical parametric oscillator.
    Yoo YS; Lee DH; Cho H
    Opt Lett; 2007 Nov; 32(22):3254-6. PubMed ID: 18026271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.