BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26269487)

  • 21. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development, manufacturing and application of double-sided flexible implantable microelectrodes.
    Poppendieck W; Sossalla A; Krob MO; Welsch C; Nguyen TA; Gong W; DiGiovanna J; Micera S; Merfeld DM; Hoffmann KP
    Biomed Microdevices; 2014 Dec; 16(6):837-50. PubMed ID: 25078417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of flexible microelectrode arrays for recording cortical surface field potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards Long-Term Stable Polyimide-Based Flexible Electrical Insulation for Chronically Implanted Neural Electrodes.
    Schander A; Gancz JM; Tintelott M; Lang W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A polyimide pressure-contact multielectrode array for implantation along a submillimeter neural process in small animals.
    Lott GK; Hoy RR
    IEEE Trans Biomed Eng; 2008 Jun; 55(6):1728-32. PubMed ID: 18714837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microprobe array with low impedance electrodes and highly flexible polyimide cables for acute neural recording.
    Kisban S; Herwik S; Seidl K; Rubehn B; Jezzini A; Umiltà MA; Fogassi L; Stieglitz T; Paul O; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():175-8. PubMed ID: 18001917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implantable flexible electrodes for functional electrical stimulation.
    Schneider A; Stieglitz T
    Med Device Technol; 2004; 15(1):16-8. PubMed ID: 14994633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High temperature polyimide containing anthracene moiety and its structure, interface, and nonvolatile memory behavior.
    Park S; Kim K; Kim DM; Kwon W; Choi J; Ree M
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):765-73. PubMed ID: 21338065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response?
    Lee HC; Ejserholm F; Gaire J; Currlin S; Schouenborg J; Wallman L; Bengtsson M; Park K; Otto KJ
    J Neural Eng; 2017 Jun; 14(3):036026. PubMed ID: 28470152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon fiber on polyimide ultra-microelectrodes.
    Gillis WF; Lissandrello CA; Shen J; Pearre BW; Mertiri A; Deku F; Cogan S; Holinski BJ; Chew DJ; White AE; Otchy TM; Gardner TJ
    J Neural Eng; 2018 Feb; 15(1):016010. PubMed ID: 28905812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and characterization of nonplanar microelectrode array circuits for use in arthroscopic diagnosis of cartilage diseases.
    Quenneville E; Binette JS; Garon M; Légaré A; Meunier M; Buschmann MD
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2164-73. PubMed ID: 15605864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A three-dimensional self-opening intraneural peripheral interface (SELINE).
    Cutrone A; Del Valle J; Santos D; Badia J; Filippeschi C; Micera S; Navarro X; Bossi S
    J Neural Eng; 2015 Feb; 12(1):016016. PubMed ID: 25605565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and robust hydrogen sensors based on discontinuous palladium films on polyimide, fabricated on a wafer scale.
    Kiefer T; Villanueva LG; Fargier F; Favier F; Brugger J
    Nanotechnology; 2010 Dec; 21(50):505501. PubMed ID: 21098952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical platinum coatings for improving performance of implantable microelectrode arrays.
    de Haro C; Mas R; Abadal G; Muñoz J; Perez-Murano F; Dominguez C
    Biomaterials; 2002 Dec; 23(23):4515-21. PubMed ID: 12322971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.