These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 26269545)
1. Differential Role for Trehalose Metabolism in Salt-Stressed Maize. Henry C; Bledsoe SW; Griffiths CA; Kollman A; Paul MJ; Sakr S; Lagrimini LM Plant Physiol; 2015 Oct; 169(2):1072-89. PubMed ID: 26269545 [TBL] [Abstract][Full Text] [Related]
2. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness. Henry C; Bledsoe SW; Siekman A; Kollman A; Waters BM; Feil R; Stitt M; Lagrimini LM J Exp Bot; 2014 Nov; 65(20):5959-73. PubMed ID: 25271261 [TBL] [Abstract][Full Text] [Related]
3. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion. Bledsoe SW; Henry C; Griffiths CA; Paul MJ; Feil R; Lunn JE; Stitt M; Lagrimini LM BMC Plant Biol; 2017 Apr; 17(1):74. PubMed ID: 28403831 [TBL] [Abstract][Full Text] [Related]
4. From Leaf to Kernel: Trehalose-6-Phosphate Signaling Moves Carbon in the Field. Smeekens S Plant Physiol; 2015 Oct; 169(2):912-3. PubMed ID: 26417053 [TBL] [Abstract][Full Text] [Related]
5. A Tale of Two Sugars: Trehalose 6-Phosphate and Sucrose. Figueroa CM; Lunn JE Plant Physiol; 2016 Sep; 172(1):7-27. PubMed ID: 27482078 [TBL] [Abstract][Full Text] [Related]
6. Trehalose 6-Phosphate Regulates Photosynthesis and Assimilate Partitioning in Reproductive Tissue. Oszvald M; Primavesi LF; Griffiths CA; Cohn J; Basu SS; Nuccio ML; Paul MJ Plant Physiol; 2018 Apr; 176(4):2623-2638. PubMed ID: 29437777 [TBL] [Abstract][Full Text] [Related]
7. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf. Czedik-Eysenberg A; Arrivault S; Lohse MA; Feil R; Krohn N; Encke B; Nunes-Nesi A; Fernie AR; Lunn JE; Sulpice R; Stitt M Plant Physiol; 2016 Oct; 172(2):943-967. PubMed ID: 27582314 [TBL] [Abstract][Full Text] [Related]
8. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Nunes C; O'Hara LE; Primavesi LF; Delatte TL; Schluepmann H; Somsen GW; Silva AB; Fevereiro PS; Wingler A; Paul MJ Plant Physiol; 2013 Jul; 162(3):1720-32. PubMed ID: 23735508 [TBL] [Abstract][Full Text] [Related]
9. Apoplastic infusion of sucrose into stem internodes during female flowering does not increase grain yield in maize plants grown under nitrogen-limiting conditions. Peng Y; Li C; Fritschi FB Physiol Plant; 2013 Aug; 148(4):470-80. PubMed ID: 23061679 [TBL] [Abstract][Full Text] [Related]
10. Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Martínez-Barajas E; Delatte T; Schluepmann H; de Jong GJ; Somsen GW; Nunes C; Primavesi LF; Coello P; Mitchell RA; Paul MJ Plant Physiol; 2011 May; 156(1):373-81. PubMed ID: 21402798 [TBL] [Abstract][Full Text] [Related]
11. The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. Yadav UP; Ivakov A; Feil R; Duan GY; Walther D; Giavalisco P; Piques M; Carillo P; Hubberten HM; Stitt M; Lunn JE J Exp Bot; 2014 Mar; 65(4):1051-68. PubMed ID: 24420566 [TBL] [Abstract][Full Text] [Related]
12. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Wingler A; Delatte TL; O'Hara LE; Primavesi LF; Jhurreea D; Paul MJ; Schluepmann H Plant Physiol; 2012 Mar; 158(3):1241-51. PubMed ID: 22247267 [TBL] [Abstract][Full Text] [Related]
13. Salt stress reduces kernel number of corn by inhibiting plasma membrane H Jung S; Hütsch BW; Schubert S Plant Physiol Biochem; 2017 Apr; 113():198-207. PubMed ID: 28236753 [TBL] [Abstract][Full Text] [Related]
14. The Role of Trehalose 6-Phosphate in Crop Yield and Resilience. Paul MJ; Gonzalez-Uriarte A; Griffiths CA; Hassani-Pak K Plant Physiol; 2018 May; 177(1):12-23. PubMed ID: 29592862 [TBL] [Abstract][Full Text] [Related]
15. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Chang B; Yang L; Cong W; Zu Y; Tang Z Plant Physiol Biochem; 2014 Apr; 77():140-8. PubMed ID: 24589477 [TBL] [Abstract][Full Text] [Related]
16. Trehalose-6-phosphate and SNF1-related protein kinase 1 are involved in the first-fruit inhibition of cucumber. Zhang Z; Deng Y; Song X; Miao M J Plant Physiol; 2015 Apr; 177():110-120. PubMed ID: 25723473 [TBL] [Abstract][Full Text] [Related]
18. Trehalose metabolism in plants. Lunn JE; Delorge I; Figueroa CM; Van Dijck P; Stitt M Plant J; 2014 Aug; 79(4):544-67. PubMed ID: 24645920 [TBL] [Abstract][Full Text] [Related]
19. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Jang IC; Oh SJ; Seo JS; Choi WB; Song SI; Kim CH; Kim YS; Seo HS; Choi YD; Nahm BH; Kim JK Plant Physiol; 2003 Feb; 131(2):516-24. PubMed ID: 12586876 [TBL] [Abstract][Full Text] [Related]