These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26269553)

  • 21. Grasping in absence of feedback: systematic biases endure extensive training.
    Bozzacchi C; Volcic R; Domini F
    Exp Brain Res; 2016 Jan; 234(1):255-65. PubMed ID: 26449965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of learned pictorial cues in the programming and control of grasping.
    Marotta JJ; Goodale MA
    Exp Brain Res; 1998 Aug; 121(4):465-70. PubMed ID: 9746154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Velocity constancy in a virtual reality environment.
    Distler HK; Gegenfurtner KR; van Veen HA; Hawken MJ
    Perception; 2000; 29(12):1423-35. PubMed ID: 11257966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of illusory size on force production when grasping objects.
    Westwood DA; Dubrowski A; Carnahan H; Roy EA
    Exp Brain Res; 2000 Dec; 135(4):535-43. PubMed ID: 11156317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.
    Levin MF; Magdalon EC; Michaelsen SM; Quevedo AA
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1047-55. PubMed ID: 25594971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-illuminant ambiguity and color constancy: effects of scene complexity and depth cues.
    Kraft JM; Maloney SI; Brainard DH
    Perception; 2002; 31(2):247-63. PubMed ID: 11922136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mice move smoothly: irrelevant object variation affects perception, but not computer mouse actions.
    Janczyk M; Pfister R; Kunde W
    Exp Brain Res; 2013 Nov; 231(1):97-106. PubMed ID: 23955104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cue combination for 3D location judgements.
    Svarverud E; Gilson SJ; Glennerster A
    J Vis; 2010 Jan; 10(1):5.1-13. PubMed ID: 20143898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of visually evoked movement responses in moving virtual environments.
    Reed-Jones RJ; Vallis LA
    Perception; 2009; 38(5):652-63. PubMed ID: 19662941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements.
    Gerig N; Mayo J; Baur K; Wittmann F; Riener R; Wolf P
    PLoS One; 2018; 13(1):e0189275. PubMed ID: 29293512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stereovision for action reflects our perceptual experience of distance and depth.
    Campagnoli C; Croom S; Domini F
    J Vis; 2017 Aug; 17(9):21. PubMed ID: 28837967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual cues signaling object grasp reduce interference in motor learning.
    Cothros N; Wong J; Gribble PL
    J Neurophysiol; 2009 Oct; 102(4):2112-20. PubMed ID: 19657075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reprogramming of grip aperture in a double-step virtual grasping paradigm.
    Bock O; Jüngling S
    Exp Brain Res; 1999 Mar; 125(1):61-6. PubMed ID: 10100977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration.
    Hosang S; Chan J; Davarpanah Jazi S; Heath M
    Exp Brain Res; 2016 Apr; 234(4):945-54. PubMed ID: 26680769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereoscopic depth constancy for physical objects and their virtual counterparts.
    Hartle B; Wilcox LM
    J Vis; 2022 Mar; 22(4):9. PubMed ID: 35315875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disparity-defined objects moving in depth do not elicit three-dimensional shape constancy.
    Scarfe P; Hibbard PB
    Vision Res; 2006 May; 46(10):1599-610. PubMed ID: 16364392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size and shape constancy in consumer virtual reality.
    Hornsey RL; Hibbard PB; Scarfe P
    Behav Res Methods; 2020 Aug; 52(4):1587-1598. PubMed ID: 32399659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.