These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26269553)

  • 41. Size constancy in bat biosonar? Perceptual interaction of object aperture and distance.
    Heinrich M; Wiegrebe L
    PLoS One; 2013; 8(4):e61577. PubMed ID: 23630598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adaptation of pointing and visual localization in depth around the natural grasping distance.
    Wiesing M; Kartashova T; Zimmermann E
    J Neurophysiol; 2021 Jun; 125(6):2206-2218. PubMed ID: 33949885
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A depth illusion supports the model of General Object Constancy: Size and depth constancies related by a same distance-scaling factor.
    Qian J; Petrov Y
    Vision Res; 2016 Dec; 129():77-86. PubMed ID: 27810350
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Different brain correlates for watching real and virtual hand actions.
    Perani D; Fazio F; Borghese NA; Tettamanti M; Ferrari S; Decety J; Gilardi MC
    Neuroimage; 2001 Sep; 14(3):749-58. PubMed ID: 11506547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Active visuomotor interactions with virtual objects on touchscreens adhere to Weber's law.
    Ozana A; Namdar G; Ganel T
    Psychol Res; 2020 Nov; 84(8):2144-2156. PubMed ID: 31203455
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lightness constancy in reality, in virtual reality, and on flat-panel displays.
    Patel KY; Wilcox LM; Maloney LT; Ehinger KA; Patel JY; Wiedenmann E; Murray RF
    Behav Res Methods; 2024 Sep; 56(6):6389-6407. PubMed ID: 38443726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computation of Object Size in Visual Cortical Area V4 as a Neural Basis for Size Constancy.
    Tanaka S; Fujita I
    J Neurosci; 2015 Aug; 35(34):12033-46. PubMed ID: 26311782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Planning movements well in advance.
    Hesse C; de Grave DD; Franz VH; Brenner E; Smeets JB
    Cogn Neuropsychol; 2008; 25(7-8):985-95. PubMed ID: 18608330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Goal-directed grasping: the dimensional properties of an object influence the nature of the visual information mediating aperture shaping.
    Holmes SA; Heath M
    Brain Cogn; 2013 Jun; 82(1):18-24. PubMed ID: 23501700
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The endless visuomotor calibration of reach-to-grasp actions.
    Volcic R; Domini F
    Sci Rep; 2018 Oct; 8(1):14803. PubMed ID: 30287832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reaching for visual cues to depth: the brain combines depth cues differently for motor control and perception.
    Knill DC
    J Vis; 2005 Feb; 5(2):103-15. PubMed ID: 15831071
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perceptuo-motor interactions during prehension movements.
    Verhagen L; Dijkerman HC; Grol MJ; Toni I
    J Neurosci; 2008 Apr; 28(18):4726-35. PubMed ID: 18448649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Grasping movements toward seen and handheld objects.
    Camponogara I; Volcic R
    Sci Rep; 2019 Mar; 9(1):3665. PubMed ID: 30842478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinct visual cues mediate aperture shaping for grasping and pantomime-grasping tasks.
    Holmes SA; Lohmus J; McKinnon S; Mulla A; Heath M
    J Mot Behav; 2013; 45(5):431-9. PubMed ID: 23971991
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Haptic feedback attenuates illusory bias in pantomime-grasping: evidence for a visuo-haptic calibration.
    Chan J; Heath M
    Exp Brain Res; 2017 Apr; 235(4):1041-1051. PubMed ID: 28070622
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visual distance estimation in static compared to moving virtual scenes.
    Frenz H; Lappe M
    Span J Psychol; 2006 Nov; 9(2):321-31. PubMed ID: 17120711
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Explicit and implicit depth-cue integration: Evidence of systematic biases with real objects.
    Campagnoli C; Hung B; Domini F
    Vision Res; 2022 Jan; 190():107961. PubMed ID: 34757304
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of binocular vision in grasping: a small stimulus-set distorts results.
    Keefe BD; Watt SJ
    Exp Brain Res; 2009 Apr; 194(3):435-44. PubMed ID: 19198815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On perceptual biases in virtual object manipulation: Signal reliability and action relevance matter.
    Kirsch W; Kunde W
    Atten Percept Psychophys; 2019 Nov; 81(8):2881-2889. PubMed ID: 31190312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.