BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26269554)

  • 1. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.
    Fields DP; Springborn SR; Mitchell GS
    J Neurophysiol; 2015 Sep; 114(3):2015-22. PubMed ID: 26269554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent cAMP signaling differentially regulates serotonin-induced spinal motor plasticity.
    Fields DP; Mitchell GS
    Neuropharmacology; 2017 Feb; 113(Pt A):82-88. PubMed ID: 27663700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase Cδ constrains the S-pathway to phrenic motor facilitation elicited by spinal 5-HT
    Perim RR; Fields DP; Mitchell GS
    J Physiol; 2019 Jan; 597(2):481-498. PubMed ID: 30382587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-talk inhibition between 5-HT
    Perim RR; Fields DP; Mitchell GS
    Am J Physiol Regul Integr Comp Physiol; 2018 May; 314(5):R709-R715. PubMed ID: 29384698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal 5-HT7 receptors and protein kinase A constrain intermittent hypoxia-induced phrenic long-term facilitation.
    Hoffman MS; Mitchell GS
    Neuroscience; 2013 Oct; 250():632-43. PubMed ID: 23850591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal AMP kinase activity differentially regulates phrenic motor plasticity.
    Perim RR; Fields DP; Mitchell GS
    J Appl Physiol (1985); 2020 Mar; 128(3):523-533. PubMed ID: 31971473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation.
    Hoffman MS; Mitchell GS
    J Physiol; 2011 Mar; 589(Pt 6):1397-407. PubMed ID: 21242254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling.
    Agosto-Marlin IM; Nichols NL; Mitchell GS
    J Neurophysiol; 2018 Jun; 119(6):2176-2185. PubMed ID: 29513151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of severe acute intermittent hypoxia-induced phrenic long-term facilitation.
    Nichols NL; Mitchell GS
    J Neurophysiol; 2021 Apr; 125(4):1146-1156. PubMed ID: 33566744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cervical spinal 5-HT
    Tadjalli A; Mitchell GS
    J Appl Physiol (1985); 2019 Aug; 127(2):432-443. PubMed ID: 31219768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian target of rapamycin is required for phrenic long-term facilitation following severe but not moderate acute intermittent hypoxia.
    Dougherty BJ; Fields DP; Mitchell GS
    J Neurophysiol; 2015 Sep; 114(3):1784-91. PubMed ID: 26224775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Episodic spinal serotonin receptor activation elicits long-lasting phrenic motor facilitation by an NADPH oxidase-dependent mechanism.
    MacFarlane PM; Mitchell GS
    J Physiol; 2009 Nov; 587(Pt 22):5469-81. PubMed ID: 19805745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BDNF-induced phrenic motor facilitation shifts from PKCθ to ERK dependence with mild systemic inflammation.
    Agosto-Marlin IM; Nikodemova M; Dale EA; Mitchell GS
    J Neurophysiol; 2023 Feb; 129(2):455-464. PubMed ID: 36695529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal TNF is necessary for inactivity-induced phrenic motor facilitation.
    Broytman O; Baertsch NA; Baker-Herman TL
    J Physiol; 2013 Nov; 591(22):5585-98. PubMed ID: 23878370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation.
    Devinney MJ; Nichols NL; Mitchell GS
    J Neurosci; 2016 Jul; 36(30):7877-85. PubMed ID: 27466333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal vascular endothelial growth factor induces phrenic motor facilitation via extracellular signal-regulated kinase and Akt signaling.
    Dale-Nagle EA; Satriotomo I; Mitchell GS
    J Neurosci; 2011 May; 31(21):7682-90. PubMed ID: 21613481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal BDNF-induced phrenic motor facilitation requires PKCθ activity.
    Agosto-Marlin IM; Mitchell GS
    J Neurophysiol; 2017 Nov; 118(5):2755-2762. PubMed ID: 28855298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal nNOS regulates phrenic motor facilitation by a 5-HT2B receptor- and NADPH oxidase-dependent mechanism.
    MacFarlane PM; Vinit S; Mitchell GS
    Neuroscience; 2014 Jun; 269():67-78. PubMed ID: 24680940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phrenic motor neuron adenosine 2A receptors elicit phrenic motor facilitation.
    Seven YB; Perim RR; Hobson OR; Simon AK; Tadjalli A; Mitchell GS
    J Physiol; 2018 Apr; 596(8):1501-1512. PubMed ID: 29388230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity.
    MacFarlane PM; Vinit S; Mitchell GS
    Neuroscience; 2011 Mar; 178():45-55. PubMed ID: 21223996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.