These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26270084)

  • 1. Elucidating Nonwetting of Re-Entrant Surfaces with Impinging Droplets.
    Zhang B; Zhang X
    Langmuir; 2015 Sep; 31(34):9448-57. PubMed ID: 26270084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling states of water droplets on nanostructured surfaces by design.
    Zhu C; Gao Y; Huang Y; Li H; Meng S; Francisco JS; Zeng XC
    Nanoscale; 2017 Nov; 9(46):18240-18245. PubMed ID: 29104978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-entrant Cavities Enhance Resilience to the Cassie-to-Wenzel State Transition on Superhydrophobic Surfaces during Electrowetting.
    Roy R; Weibel JA; Garimella SV
    Langmuir; 2018 Oct; 34(43):12787-12793. PubMed ID: 30277779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon surface structure-controlled oleophobicity.
    Liu Y; Xiu Y; Hess DW; Wong CP
    Langmuir; 2010 Jun; 26(11):8908-13. PubMed ID: 20205405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface.
    Koishi T; Yasuoka K; Fujikawa S; Ebisuzaki T; Zeng XC
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8435-40. PubMed ID: 19429707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impingement dynamics of water drops onto four graphite morphologies: from triple line recoil to pinning.
    Pittoni PG; Tsao HK; Hung YL; Huang JW; Lin SY
    J Colloid Interface Sci; 2014 Mar; 417():256-63. PubMed ID: 24407685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Boltzmann modeling of droplet condensation on superhydrophobic nanoarrays.
    Zhang Q; Sun D; Zhang Y; Zhu M
    Langmuir; 2014 Oct; 30(42):12559-69. PubMed ID: 25275954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.
    Zhao L; Cheng J
    Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D; Lee C; Nam Y
    Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements.
    Bahadur V; Garimella SV
    Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why re-entrant surface topography is needed for robust oleophobicity.
    Nosonovsky M; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS).
    Guan JH; Wells GG; Xu B; McHale G; Wood D; Martin J; Stuart-Cole S
    Langmuir; 2015 Nov; 31(43):11781-9. PubMed ID: 26446177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.