These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 26270098)
1. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells. Becker MA; Radich EJ; Bunker BA; Kamat PV J Phys Chem Lett; 2014 May; 5(9):1575-82. PubMed ID: 26270098 [TBL] [Abstract][Full Text] [Related]
2. Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells. Jin BB; Kong SY; Zhang GQ; Chen XQ; Ni HS; Zhang F; Wang DJ; Zeng JH J Colloid Interface Sci; 2021 Mar; 586():640-646. PubMed ID: 33183753 [TBL] [Abstract][Full Text] [Related]
3. Performance enhancement of quantum-dot-sensitized solar cells by potential-induced ionic layer adsorption and reaction. Liu IP; Chang CW; Teng H; Lee YL ACS Appl Mater Interfaces; 2014 Nov; 6(21):19378-84. PubMed ID: 25331272 [TBL] [Abstract][Full Text] [Related]
4. Structural evolution from the CdSSe alloy to the CdS/CdSe core/shell in Cd(S and Se) composite quantum dots and its impact on the performance of sensitized solar cells. Fang J; Lv W; Lei Y; Deng J; Zhang P; Huang W Dalton Trans; 2021 Oct; 50(41):14672-14683. PubMed ID: 34585707 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of Mn Zhang C; Liu S; Liu X; Deng F; Xiong Y; Tsai FC R Soc Open Sci; 2018 Mar; 5(3):171712. PubMed ID: 29657776 [TBL] [Abstract][Full Text] [Related]
6. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Lee H; Wang M; Chen P; Gamelin DR; Zakeeruddin SM; Grätzel M; Nazeeruddin MK Nano Lett; 2009 Dec; 9(12):4221-7. PubMed ID: 19891465 [TBL] [Abstract][Full Text] [Related]
7. Influence of Quantum Dot Concentration on Carrier Transport in ZnO:TiO₂ Nano-Hybrid Photoanodes for Quantum Dot-Sensitized Solar Cells. Maloney FS; Poudyal U; Chen W; Wang W Nanomaterials (Basel); 2016 Oct; 6(11):. PubMed ID: 28335319 [TBL] [Abstract][Full Text] [Related]
8. Charge recombination control for high efficiency CdS/CdSe quantum dot co-sensitized solar cells with multi-ZnS layers. Wu Q; Hou J; Zhao H; Liu Z; Yue X; Peng S; Cao H Dalton Trans; 2018 Feb; 47(7):2214-2221. PubMed ID: 29362750 [TBL] [Abstract][Full Text] [Related]
9. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. Muthalif MPA; Sunesh CD; Choe Y J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116 [TBL] [Abstract][Full Text] [Related]
10. ZnS Zhang L; Rao H; Pan Z; Zhong X ACS Appl Mater Interfaces; 2019 Nov; 11(44):41415-41423. PubMed ID: 31613581 [TBL] [Abstract][Full Text] [Related]
11. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Abbas MA; Basit MA; Park TJ; Bang JH Phys Chem Chem Phys; 2015 Apr; 17(15):9752-60. PubMed ID: 25773573 [TBL] [Abstract][Full Text] [Related]
12. CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization. Zhou Z; Yuan S; Fan J; Hou Z; Zhou W; Du Z; Wu S Nanoscale Res Lett; 2012 Nov; 7(1):652. PubMed ID: 23181940 [TBL] [Abstract][Full Text] [Related]
13. PbS Quantum Dots Sensitized TiO2 Solar Cells Prepared by Successive Ionic Layer Absorption and Reaction with Different Adsorption Layers. Yi J; Duan Y; Liu C; Gao S; Han X; An L J Nanosci Nanotechnol; 2016 Apr; 16(4):3904-8. PubMed ID: 27451735 [TBL] [Abstract][Full Text] [Related]
14. Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material. Guo F; He J; Li J; Wu W; Hang Y; Hua J J Colloid Interface Sci; 2013 Oct; 408():59-65. PubMed ID: 23928484 [TBL] [Abstract][Full Text] [Related]
15. Interface Engineering of Colloidal CdSe Quantum Dot Thin Films as Acid-Stable Photocathodes for Solar-Driven Hydrogen Evolution. Li H; Wen P; Hoxie A; Dun C; Adhikari S; Li Q; Lu C; Itanze DS; Jiang L; Carroll D; Lachgar A; Qiu Y; Geyer SM ACS Appl Mater Interfaces; 2018 May; 10(20):17129-17139. PubMed ID: 29712425 [TBL] [Abstract][Full Text] [Related]
16. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure. Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125 [TBL] [Abstract][Full Text] [Related]
17. Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells. Roelofs KE; Herron SM; Bent SF ACS Nano; 2015 Aug; 9(8):8321-34. PubMed ID: 26244426 [TBL] [Abstract][Full Text] [Related]
18. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency. Yuan Z; Yin L Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells. Tsukigase H; Suzuki Y; Berger MH; Sagawa T; Yoshikawa S J Nanosci Nanotechnol; 2011 Mar; 11(3):1914-22. PubMed ID: 21449328 [TBL] [Abstract][Full Text] [Related]
20. CdSe@CdS core-shell quantum dot-polymer multilayer sensitized TiO2 for photovoltaics. Cui Y; Chen H; Zheng M; Dai Z; Liu S J Nanosci Nanotechnol; 2011 May; 11(5):3851-60. PubMed ID: 21780377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]