These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 26270176)
1. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Camañes G; Scalschi L; Vicedo B; González-Bosch C; García-Agustín P Plant J; 2015 Oct; 84(1):125-39. PubMed ID: 26270176 [TBL] [Abstract][Full Text] [Related]
2. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D; Zhang H; Song Q; Wang L; Liu S; Hong Y; Huang L; Song F BMC Plant Biol; 2015 Jun; 15():143. PubMed ID: 26070456 [TBL] [Abstract][Full Text] [Related]
3. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Nguyen NH; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A J Exp Bot; 2022 Jun; 73(11):3743-3757. PubMed ID: 35191984 [TBL] [Abstract][Full Text] [Related]
4. Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Vicedo B; Flors V; de la O Leyva M; Finiti I; Kravchuk Z; Real MD; García-Agustín P; González-Bosch C Mol Plant Microbe Interact; 2009 Nov; 22(11):1455-65. PubMed ID: 19810814 [TBL] [Abstract][Full Text] [Related]
5. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
6. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Zhang H; Yan M; Deng R; Song F; Jiang M Gene; 2020 Feb; 727():144245. PubMed ID: 31715302 [TBL] [Abstract][Full Text] [Related]
7. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938 [TBL] [Abstract][Full Text] [Related]
8. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
9. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X; Huang L; Zhang Y; Ouyang Z; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2014 Oct; 14():286. PubMed ID: 25348703 [TBL] [Abstract][Full Text] [Related]
10. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Wang L; Liu W; Wang Y Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269 [TBL] [Abstract][Full Text] [Related]
11. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress. Liu B; Hong YB; Zhang YF; Li XH; Huang L; Zhang HJ; Li DY; Song FM Plant Sci; 2014 Oct; 227():145-56. PubMed ID: 25219316 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions. Finiti I; Leyva MO; López-Cruz J; Calderan Rodrigues B; Vicedo B; Angulo C; Bennett AB; Grant M; García-Agustín P; González-Bosch C Plant Biol (Stuttg); 2013 Sep; 15(5):819-31. PubMed ID: 23528138 [TBL] [Abstract][Full Text] [Related]
13. Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana. Zhang Y; Jin X; Ouyang Z; Li X; Liu B; Huang L; Hong Y; Zhang H; Song F; Li D J Plant Physiol; 2015 Mar; 175():21-5. PubMed ID: 25460872 [TBL] [Abstract][Full Text] [Related]
14. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Scalschi L; Vicedo B; Camañes G; Fernandez-Crespo E; Lapeña L; González-Bosch C; García-Agustín P Mol Plant Pathol; 2013 May; 14(4):342-55. PubMed ID: 23279078 [TBL] [Abstract][Full Text] [Related]
15. Priming of Immune System in Tomato by Treatment with Low Concentration of L-Methionine. Tanaka T; Fujita M; Kusajima M; Narita F; Asami T; Maruyama-Nakashita A; Nakajima M; Nakashita H Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928022 [TBL] [Abstract][Full Text] [Related]
16. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato. Zhang H; Hong Y; Huang L; Liu S; Tian L; Dai Y; Cao Z; Huang L; Li D; Song F Front Plant Sci; 2016; 7():1176. PubMed ID: 27540389 [TBL] [Abstract][Full Text] [Related]