BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26270228)

  • 1. Extraction, purification and characterization of the crystallin protein of cataractous eye lens nucleus.
    Sher M; Hameed A; Noreen S; Fayyaz-ur-Rehman M; Hussain MA; Bukhari SN
    Analyst; 2015 Sep; 140(18):6392-7. PubMed ID: 26270228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of gamma-crystallin from human lenses by acetone precipitation method.
    Srivastava OP; Srivastava K
    Curr Eye Res; 1998 Nov; 17(11):1074-81. PubMed ID: 9846626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of lens proteins. IV. Analysis of soluble high molecular weight protein aggregates in human lenses.
    Fu SC; Su SW; Wagner BJ; Hart R
    Exp Eye Res; 1984 May; 38(5):485-95. PubMed ID: 6745324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of crystallin distribution in porcine eye lenses.
    Keenan J; Orr DF; Pierscionek BK
    Mol Vis; 2008 Jul; 14():1245-53. PubMed ID: 18615203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lens proteins in intumescent cataract.
    Ringens PJ; Bistervels B; Hoenders HJ; Wollensak J
    Ophthalmic Res; 1986; 18(2):61-7. PubMed ID: 3737113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in the soluble alpha-crystallin proteins from human cataractous lenses.
    Alao JF
    Afr J Med Med Sci; 1978 Mar; 7(1):49-56. PubMed ID: 97955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y; Takeda T; Hosokawa M
    Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallin distribution patterns in concentric layers from toad eye lenses.
    Keenan J; Elia G; Dunn MJ; Orr DF; Pierscionek BK
    Proteomics; 2009 Dec; 9(23):5340-9. PubMed ID: 19813212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of the crystallins of the normal and cataractous canine lens.
    Daniel WJ; Noonan NE; Gelatt KN
    Curr Eye Res; 1984 Jul; 3(7):911-22. PubMed ID: 6467967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S; Liu P; Zhang H; Li Z; Song Z; Zhang L; Chen S
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4182-91. PubMed ID: 21436267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on soluble proteins in human fetal lens].
    Cao X; Li S; Pan S; Liang S; Wu K; Huang Q
    Yan Ke Xue Bao; 1994 Dec; 10(4):236-40. PubMed ID: 7774699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.