These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 26270239)
1. Nuclear Quantum Effects in the Layering and Diffusion of Hydrogen Isotopes in Carbon Nanotubes. Kowalczyk P; Terzyk AP; Gauden PA; Furmaniak S; Kaneko K; Miller TF J Phys Chem Lett; 2015 Sep; 6(17):3367-72. PubMed ID: 26270239 [TBL] [Abstract][Full Text] [Related]
2. Diffusion of H2 and D2 Confined in Single-Walled Carbon Nanotubes: Quantum Dynamics and Confinement Effects. Mondelo-Martell M; Huarte-Larrañaga F J Phys Chem A; 2016 Aug; 120(33):6501-12. PubMed ID: 27459476 [TBL] [Abstract][Full Text] [Related]
3. Molecular Sieves for the Separation of Hydrogen Isotopes. Perez-Carbajo J; Parra JB; Ania CO; Merkling PJ; Calero S ACS Appl Mater Interfaces; 2019 May; 11(20):18833-18840. PubMed ID: 31022344 [TBL] [Abstract][Full Text] [Related]
4. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation. Qu Y; Li F; Zhou H; Zhao M Sci Rep; 2016 Jan; 6():19952. PubMed ID: 26813491 [TBL] [Abstract][Full Text] [Related]
5. Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes. Kowalczyk P; Gauden PA; Terzyk AP; Furmaniak S Phys Chem Chem Phys; 2011 May; 13(20):9824-30. PubMed ID: 21503294 [TBL] [Abstract][Full Text] [Related]
6. An exceptional kinetic quantum sieving separation effect of hydrogen isotopes on commercially available carbon molecular sieves. Xing Y; Cai J; Li L; Yang M; Zhao X Phys Chem Chem Phys; 2014 Aug; 16(30):15800-5. PubMed ID: 24965123 [TBL] [Abstract][Full Text] [Related]
7. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores. Kowalczyk P; Gauden PA; Terzyk AP J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395 [TBL] [Abstract][Full Text] [Related]
8. Structural, dynamical, and thermodynamical properties of carbon nanotube polycarbonate composites: a molecular dynamics study. Chakraborty S; Roy S J Phys Chem B; 2012 Mar; 116(10):3083-91. PubMed ID: 22339407 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen isotope separation in carbon nanotubes: calculation of coupled rotational and translational States at high densities. Garberoglio G; Johnson JK ACS Nano; 2010 Mar; 4(3):1703-15. PubMed ID: 20146443 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the Dynamic Behaviour of H Yang D; Rochat S; Krzystyniak M; Kulak A; Olivier J; Ting VP; Tian M ACS Appl Mater Interfaces; 2024 Mar; 16(10):12467-12478. PubMed ID: 38423989 [TBL] [Abstract][Full Text] [Related]
11. Rapid diffusion of CH4/H2 mixtures in single-walled carbon nanotubes. Chen H; Sholl DS J Am Chem Soc; 2004 Jun; 126(25):7778-9. PubMed ID: 15212516 [TBL] [Abstract][Full Text] [Related]
12. Rapid diffusion of H Kong L; Ping E; Ding C; Zhang L; Zhou Y; Chen N Dalton Trans; 2023 Aug; 52(30):10448-10456. PubMed ID: 37439300 [TBL] [Abstract][Full Text] [Related]
13. Quest for Inexpensive Hydrogen Isotopic Fractionation: Do We Need 2D Quantum Confining in Porous Materials or Are Rough Surfaces Enough? The Case of Ammonia Nanoclusters. Mella M; Curotto E J Phys Chem A; 2016 Oct; 120(41):8148-8159. PubMed ID: 27704841 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. Cheng H; Cooper AC; Pez GP; Kostov MK; Piotrowski P; Stuart SJ J Phys Chem B; 2005 Mar; 109(9):3780-6. PubMed ID: 16851425 [TBL] [Abstract][Full Text] [Related]
15. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates. Cendagorta JR; Powers A; Hele TJ; Marsalek O; Bačić Z; Tuckerman ME Phys Chem Chem Phys; 2016 Nov; 18(47):32169-32177. PubMed ID: 27849073 [TBL] [Abstract][Full Text] [Related]
16. Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy. Liu X; Pan X; Zhang S; Han X; Bao X Langmuir; 2014 Jul; 30(27):8036-45. PubMed ID: 24951088 [TBL] [Abstract][Full Text] [Related]
17. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites. Weinrauch I; Savchenko I; Denysenko D; Souliou SM; Kim HH; Le Tacon M; Daemen LL; Cheng Y; Mavrandonakis A; Ramirez-Cuesta AJ; Volkmer D; Schütz G; Hirscher M; Heine T Nat Commun; 2017 Mar; 8():14496. PubMed ID: 28262794 [TBL] [Abstract][Full Text] [Related]
18. Microscopic observation of kinetic molecular sieving of hydrogen isotopes in a nanoporous material. Nguyen TX; Jobic H; Bhatia SK Phys Rev Lett; 2010 Aug; 105(8):085901. PubMed ID: 20868113 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of Hydrogen Molecules on Carbon Nanotubes Using Quantum Chemistry and Molecular Dynamics. Faginas-Lago N; Yeni D; Huarte F; Wang Y; Alcamí M; Martin F J Phys Chem A; 2016 Aug; 120(32):6451-8. PubMed ID: 27467122 [TBL] [Abstract][Full Text] [Related]
20. Dynamic quantum molecular sieving separation of D2 from H2-D2 mixture with nanoporous materials. Niimura S; Fujimori T; Minami D; Hattori Y; Abrams L; Corbin D; Hata K; Kaneko K J Am Chem Soc; 2012 Nov; 134(45):18483-6. PubMed ID: 23116187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]