These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26270373)

  • 1. Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations.
    Aryanfar A; Brooks D; Merinov BV; Goddard WA; Colussi AJ; Hoffmann MR
    J Phys Chem Lett; 2014 May; 5(10):1721-6. PubMed ID: 26270373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries.
    Li Q; Tan S; Li L; Lu Y; He Y
    Sci Adv; 2017 Jul; 3(7):e1701246. PubMed ID: 28776039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal relaxation of lithium dendrites.
    Aryanfar A; Brooks DJ; Colussi AJ; Merinov BV; Goddard WA; Hoffmann MR
    Phys Chem Chem Phys; 2015 Mar; 17(12):8000-5. PubMed ID: 25721308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triboelectric Nanogenerator-Enabled Dendrite-Free Lithium Metal Batteries.
    Li NW; Yin Y; Du X; Zhang X; Yuan Z; Niu H; Cao R; Fan W; Zhang Y; Xu W; Li C
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):802-810. PubMed ID: 30525402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Pulse Charging by Triboelectric Nanogenerators on the Performance of Solid-State Lithium Metal Batteries.
    Qiu G; Lu L; Lu Y; Sun C
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28345-28350. PubMed ID: 32484647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation.
    Li W; Zheng H; Chu G; Luo F; Zheng J; Xiao D; Li X; Gu L; Li H; Wei X; Chen Q; Chen L
    Faraday Discuss; 2014; 176():109-24. PubMed ID: 25406865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries.
    Khurana R; Schaefer JL; Archer LA; Coates GW
    J Am Chem Soc; 2014 May; 136(20):7395-402. PubMed ID: 24754503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries.
    Aryanfar A; Brooks DJ; Colussi AJ; Hoffmann MR
    Phys Chem Chem Phys; 2014 Dec; 16(45):24965-70. PubMed ID: 25325758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Crucial Role of Local Excess Charges in Dendrite Growth on Lithium Electrodes.
    Santos E; Schmickler W
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5876-5881. PubMed ID: 33433930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Annealing kinetics of electrodeposited lithium dendrites.
    Aryanfar A; Cheng T; Colussi AJ; Merinov BV; Goddard WA; Hoffmann MR
    J Chem Phys; 2015 Oct; 143(13):134701. PubMed ID: 26450322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging Protocols.
    Garcia G; Ventosa E; Schuhmann W
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18691-18698. PubMed ID: 28503924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism.
    Ding F; Xu W; Graff GL; Zhang J; Sushko ML; Chen X; Shao Y; Engelhard MH; Nie Z; Xiao J; Liu X; Sushko PV; Liu J; Zhang JG
    J Am Chem Soc; 2013 Mar; 135(11):4450-6. PubMed ID: 23448508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal charging profiles for mechanically constrained lithium-ion batteries.
    Suthar B; Ramadesigan V; De S; Braatz RD; Subramanian VR
    Phys Chem Chem Phys; 2014 Jan; 16(1):277-87. PubMed ID: 24252870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth.
    Jäckle M; Groß A
    J Chem Phys; 2014 Nov; 141(17):174710. PubMed ID: 25381540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new battery-charging method suggested by molecular dynamics simulations.
    Abou Hamad I; Novotny MA; Wipf DO; Rikvold PA
    Phys Chem Chem Phys; 2010 Mar; 12(11):2740-3. PubMed ID: 20200752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.
    Jiang X; Huang J; Zhao H; Sumpter BG; Qiao R
    J Phys Condens Matter; 2014 Jul; 26(28):284109. PubMed ID: 24919471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of electric fields on metal self-diffusion barriers and its consequences on dendrite growth in batteries.
    Jäckle M; Groß A
    J Chem Phys; 2019 Dec; 151(23):234707. PubMed ID: 31864282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of diffusion constant on the morphology of dendrite growth in lithium metal batteries.
    Jang I; Yethiraj A
    J Chem Phys; 2021 Jun; 154(23):234705. PubMed ID: 34241266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.