These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26270702)

  • 21. Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction.
    Shao M; Smith BH; Guerrero S; Protsailo L; Su D; Kaneko K; Odell JH; Humbert MP; Sasaki K; Marzullo J; Darling RM
    Phys Chem Chem Phys; 2013 Sep; 15(36):15078-90. PubMed ID: 23925477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions.
    Sun X; Li D; Ding Y; Zhu W; Guo S; Wang ZL; Sun S
    J Am Chem Soc; 2014 Apr; 136(15):5745-9. PubMed ID: 24650288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Platinum-carbide interactions: core-shells for catalytic use.
    Yates JL; Spikes GH; Jones G
    Phys Chem Chem Phys; 2015 Feb; 17(6):4250-8. PubMed ID: 25573603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition.
    Dai Y; Chen S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):823-9. PubMed ID: 25513894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction.
    Wang X; Orikasa Y; Takesue Y; Inoue H; Nakamura M; Minato T; Hoshi N; Uchimoto Y
    J Am Chem Soc; 2013 Apr; 135(16):5938-41. PubMed ID: 23560913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface.
    Kattel S; Wang G
    J Chem Phys; 2014 Sep; 141(12):124713. PubMed ID: 25273467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction.
    Jiang G; Zhu H; Zhang X; Shen B; Wu L; Zhang S; Lu G; Wu Z; Sun S
    ACS Nano; 2015 Nov; 9(11):11014-22. PubMed ID: 26434498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.
    Gan L; Rudi S; Cui C; Heggen M; Strasser P
    Small; 2016 Jun; 12(23):3189-96. PubMed ID: 27152487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-step sonochemical syntheses of Ni@Pt core-shell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst.
    Lee E; Jang JH; Matin MA; Kwon YU
    Ultrason Sonochem; 2014 Jan; 21(1):317-23. PubMed ID: 23769750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen-Mediated Thin Pt Layer Formation on Ni
    Jeong HY; Kim DG; Akpe SG; Paidi VK; Park HS; Lee SH; Lee KS; Ham HC; Kim P; Yoo SJ
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24624-24633. PubMed ID: 34003000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges of modelling real nanoparticles: Ni@Pt electrocatalysts for the oxygen reduction reaction.
    Ramos-Sanchez G; Praserthdam S; Godinez-Salomon F; Barker C; Moerbe M; Calderon HA; Lartundo LA; Leyva MA; Solorza-Feria O; Balbuena PB
    Phys Chem Chem Phys; 2015 Nov; 17(42):28286-97. PubMed ID: 25942590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
    Froemming NS; Henkelman G
    J Chem Phys; 2009 Dec; 131(23):234103. PubMed ID: 20025310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the Pt Shell Thickness on the Oxygen Reduction Reaction on a Well-Defined Pd@Pt Core-Shell Model Surface.
    Hashiguchi Y; Nakamura I; Honma T; Matsushita T; Murayama H; Tokunaga M; Choe YK; Fujitani T
    Chemphyschem; 2023 Jan; 24(1):e202200389. PubMed ID: 36089540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells.
    Zhang X; Yu S; Qiao L; Zheng W; Liu P
    J Chem Phys; 2015 May; 142(19):194710. PubMed ID: 26001476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction.
    Wang D; Xin HL; Yu Y; Wang H; Rus E; Muller DA; Abruña HD
    J Am Chem Soc; 2010 Dec; 132(50):17664-6. PubMed ID: 21105661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Efficient Oxygen Reduction Reaction Electro-Catalyzed by Ultrasmall Pt@Mn Core-Shell Nanoparticles.
    Ren SW; Wu ZY; Chen RL; Zhang XY; Zhou W
    Chem Asian J; 2022 Sep; 17(17):e202200473. PubMed ID: 35775316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational design of efficient transition metal core-shell electrocatalysts for oxygen reduction and evolution reactions.
    Zhao Z; D'Souza J; Chen F; Xia Z
    RSC Adv; 2018 Dec; 9(1):536-542. PubMed ID: 35521622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction.
    Guo S; Zhang S; Su D; Sun S
    J Am Chem Soc; 2013 Sep; 135(37):13879-84. PubMed ID: 23978233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.