BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26270765)

  • 1. A critical reappraisal of dietary practices in methylmalonic acidemia raises concerns about the safety of medical foods. Part 1: isolated methylmalonic acidemias.
    Manoli I; Myles JG; Sloan JL; Shchelochkov OA; Venditti CP
    Genet Med; 2016 Apr; 18(4):386-95. PubMed ID: 26270765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical reappraisal of dietary practices in methylmalonic acidemia raises concerns about the safety of medical foods. Part 2: cobalamin C deficiency.
    Manoli I; Myles JG; Sloan JL; Carrillo-Carrasco N; Morava E; Strauss KA; Morton H; Venditti CP
    Genet Med; 2016 Apr; 18(4):396-404. PubMed ID: 26270766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of medical food leucine content in the management of methylmalonic and propionic acidemias.
    Myles JG; Manoli I; Venditti CP
    Curr Opin Clin Nutr Metab Care; 2018 Jan; 21(1):42-48. PubMed ID: 29035969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased plasma l-arginine levels in organic acidurias (MMA and PA) and decreased plasma branched-chain amino acid levels in urea cycle disorders as a potential cause of growth retardation: Options for treatment.
    Molema F; Gleich F; Burgard P; van der Ploeg AT; Summar ML; Chapman KA; Lund AM; Rizopoulos D; Kölker S; Williams M;
    Mol Genet Metab; 2019 Apr; 126(4):397-405. PubMed ID: 30827756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact on Isoleucine and Valine Supplementation When Decreasing Use of Medical Food in the Nutritional Management of Methylmalonic Acidemia.
    Bernstein LE; Burns C; Drumm M; Gaughan S; Sailer M; Baker PR
    Nutrients; 2020 Feb; 12(2):. PubMed ID: 32069872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of dietary treatment and amino acid supplementation in organic acidurias and urea-cycle disorders: On the basis of information from a European multicenter registry.
    Molema F; Gleich F; Burgard P; van der Ploeg AT; Summar ML; Chapman KA; Barić I; Lund AM; Kölker S; Williams M;
    J Inherit Metab Dis; 2019 Nov; 42(6):1162-1175. PubMed ID: 30734935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of branched-chain amino acid intake in children with maple syrup urine disease and methylmalonic aciduria.
    Parsons HG; Carter RJ; Unrath M; Snyder FF
    J Inherit Metab Dis; 1990; 13(2):125-36. PubMed ID: 2116544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable dietary management of methylmalonic acidemia: metabolic and energetic correlations.
    Hauser NS; Manoli I; Graf JC; Sloan J; Venditti CP
    Am J Clin Nutr; 2011 Jan; 93(1):47-56. PubMed ID: 21048060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Relationship between Dietary Intake, Growth, and Body Composition in Inborn Errors of Intermediary Protein Metabolism.
    Evans M; Truby H; Boneh A
    J Pediatr; 2017 Sep; 188():163-172. PubMed ID: 28629683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High protein prescription in methylmalonic and propionic acidemia patients and its negative association with long-term outcome.
    Molema F; Haijes HA; Janssen MC; Bosch AM; van Spronsen FJ; Mulder MF; Verhoeven-Duif NM; Jans JJM; van der Ploeg AT; Wagenmakers MA; Rubio-Gozalbo ME; Brouwers MCGJ; de Vries MC; Fuchs S; Langendonk JG; Rizopoulos D; van Hasselt PM; Williams M
    Clin Nutr; 2021 May; 40(5):3622-3630. PubMed ID: 33451859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylmalonic and propionic acidurias: management without or with a few supplements of specific amino acid mixture.
    Touati G; Valayannopoulos V; Mention K; de Lonlay P; Jouvet P; Depondt E; Assoun M; Souberbielle JC; Rabier D; Ogier de Baulny H; Saudubray JM
    J Inherit Metab Dis; 2006; 29(2-3):288-98. PubMed ID: 16763890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining ideal balance among branched-chain amino acids in medical formula for Propionic Acidemia: A proof of concept study in healthy children.
    Saleemani H; Horvath G; Stockler-Ipsiroglu S; Elango R
    Mol Genet Metab; 2022 Jan; 135(1):56-62. PubMed ID: 34969640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes.
    Collado MS; Armstrong AJ; Olson M; Hoang SA; Day N; Summar M; Chapman KA; Reardon J; Figler RA; Wamhoff BR
    Mol Genet Metab; 2020 Jul; 130(3):183-196. PubMed ID: 32451238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary management of inborn errors of amino acid metabolism with protein-modified diets.
    Thomas E
    J Child Neurol; 1992 Apr; 7 Suppl():S92-111. PubMed ID: 1588021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding acute metabolic decompensation in propionic and methylmalonic acidemias: a deep metabolic phenotyping approach.
    Haijes HA; Jans JJM; van der Ham M; van Hasselt PM; Verhoeven-Duif NM
    Orphanet J Rare Dis; 2020 Mar; 15(1):68. PubMed ID: 32143654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liver transplantation in propionic and methylmalonic acidemia: A single center study with literature review.
    Pillai NR; Stroup BM; Poliner A; Rossetti L; Rawls B; Shayota BJ; Soler-Alfonso C; Tunuguntala HP; Goss J; Craigen W; Scaglia F; Sutton VR; Himes RW; Burrage LC
    Mol Genet Metab; 2019 Dec; 128(4):431-443. PubMed ID: 31757659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autozygosity mapping of methylmalonic acidemia associated genes by short tandem repeat markers facilitates the identification of five novel mutations in an Iranian patient cohort.
    Shafaat M; Alaee MR; Rahmanifar A; Setoodeh A; Razzaghy-Azar M; Bagherian H; Bagheri SD; Zafarghandi Motlagh F; Hashemi M; Abiri M; Zeinali S
    Metab Brain Dis; 2018 Oct; 33(5):1689-1697. PubMed ID: 30022420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary practices in methylmalonic acidaemia: a European survey.
    Pinto A; Evans S; Daly A; Almeida MF; Assoun M; Belanger-Quintana A; Bernabei SM; Bollhalder S; Cassiman D; Champion H; Chan H; Corthouts K; Dalmau J; Boer F; Laet C; Meyer A; Desloovere A; Dianin A; Dixon M; Dokoupil K; Dubois S; Eyskens F; Faria A; Fasan I; Favre E; Feillet F; Fekete A; Gallo G; Gingell C; Gribben J; Hansen KK; Horst NT; Jankowski C; Janssen-Regelink R; Jones I; Jouault C; Kahrs GE; Kok I; Kowalik A; Laguerre C; Verge SL; Liguori A; Lilje R; Maddalon C; Mayr D; Meyer U; Micciche A; Och U; Robert M; Rocha JC; Rogozinski H; Rohde C; Ross K; Saruggia I; Schlune A; Singleton K; Sjoqvist E; Skeath R; Stolen LH; Terry A; Timmer C; Tomlinson L; Tooke A; Kerckhove KV; van Dam E; Hurk DVD; Ploeg LV; van Driessche M; van Rijn M; Wegberg AV; Vasconcelos C; Vestergaard H; Vitoria I; Webster D; White F; White L; Zweers H; MacDonald A
    J Pediatr Endocrinol Metab; 2020 Jan; 33(1):147-155. PubMed ID: 31846426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomarkers for drug development in propionic and methylmalonic acidemias.
    Longo N; Sass JO; Jurecka A; Vockley J
    J Inherit Metab Dis; 2022 Mar; 45(2):132-143. PubMed ID: 35038174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiometabolic risk factor clustering in patients with deficient branched-chain amino acid catabolism: A case-control study.
    Gancheva S; Caspari D; Bierwagen A; Jelenik T; Caprio S; Santoro N; Rothe M; Markgraf DF; Herebian D; Hwang JH; Öner-Sieben S; Mennenga J; Pacini G; Thimm E; Schlune A; Meissner T; Vom Dahl S; Klee D; Mayatepek E; Roden M; Ensenauer R
    J Inherit Metab Dis; 2020 Sep; 43(5):981-993. PubMed ID: 32118306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.