These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26270834)

  • 1. Water 26-mers Drawn from Bulk Simulations: Benchmark Binding Energies for Unprecedentedly Large Water Clusters and Assessment of the Electrostatically Embedded Three-Body and Pairwise Additive Approximations.
    Friedrich J; Yu H; Leverentz HR; Bai P; Siepmann JI; Truhlar DG
    J Phys Chem Lett; 2014 Feb; 5(4):666-70. PubMed ID: 26270834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
    Sorkin A; Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 May; 4(5):683-8. PubMed ID: 26621082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water 16-mers and hexamers: assessment of the three-body and electrostatically embedded many-body approximations of the correlation energy or the nonlocal energy as ways to include cooperative effects.
    Qi HW; Leverentz HR; Truhlar DG
    J Phys Chem A; 2013 May; 117(21):4486-99. PubMed ID: 23627665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the Electrostatically Embedded Many-Body Expansion and the Electrostatically Embedded Many-Body Expansion of the Correlation Energy by Application to Low-Lying Water Hexamers.
    Dahlke EE; Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):33-41. PubMed ID: 26619977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges.
    Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2009 Jun; 5(6):1573-84. PubMed ID: 26609850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aiming for benchmark accuracy with the many-body expansion.
    Richard RM; Lao KU; Herbert JM
    Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results.
    Leverentz HR; Qi HW; Truhlar DG
    J Chem Theory Comput; 2013 Feb; 9(2):995-1006. PubMed ID: 26588742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment and Validation of the Electrostatically Embedded Many-Body Expansion for Metal-Ligand Bonding.
    Hua D; Leverentz HR; Amin EA; Truhlar DG
    J Chem Theory Comput; 2011 Feb; 7(2):251-5. PubMed ID: 26596148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized Energy-Based Fragmentation CCSD(T)-F12a Method and Application to the Relative Energies of Water Clusters (H2O)20.
    Wang K; Li W; Li S
    J Chem Theory Comput; 2014 Apr; 10(4):1546-53. PubMed ID: 26580368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New accurate benchmark energies for large water clusters: DFT is better than expected.
    Anacker T; Friedrich J
    J Comput Chem; 2014 Mar; 35(8):634-43. PubMed ID: 24482156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy benchmarks for water clusters and ice structures from an embedded many-body expansion.
    Gillan MJ; Alfè D; Bygrave PJ; Taylor CR; Manby FR
    J Chem Phys; 2013 Sep; 139(11):114101. PubMed ID: 24070273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved density functionals for water.
    Dahlke EE; Truhlar DG
    J Phys Chem B; 2005 Aug; 109(33):15677-83. PubMed ID: 16852988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy benchmarks for methane-water systems from quantum Monte Carlo and second-order Møller-Plesset calculations.
    Gillan MJ; Alfè D; Manby FR
    J Chem Phys; 2015 Sep; 143(10):102812. PubMed ID: 26374005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing
    Herman KM; Xantheas SS
    Phys Chem Chem Phys; 2023 Mar; 25(10):7120-7143. PubMed ID: 36853239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving the CCSD(T) Basis-Set Limit in Sizable Molecular Clusters: Counterpoise Corrections for the Many-Body Expansion.
    Richard RM; Lao KU; Herbert JM
    J Phys Chem Lett; 2013 Aug; 4(16):2674-80. PubMed ID: 26706713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the pairwise additive approximation and evaluation of many-body terms for water clusters.
    Dahlke EE; Truhlar DG
    J Phys Chem B; 2006 Jun; 110(22):10595-601. PubMed ID: 16771303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory based generalized effective fragment potential method.
    Nguyen KA; Pachter R; Day PN
    J Chem Phys; 2014 Jun; 140(24):244101. PubMed ID: 24985612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.