These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 26270834)
41. Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT. Yang K; Peverati R; Truhlar DG; Valero R J Chem Phys; 2011 Jul; 135(4):044118. PubMed ID: 21806101 [TBL] [Abstract][Full Text] [Related]
42. Benchmark calculations on the electron detachment energies of MO3* and M2O6* (M = Cr, Mo, W). Li S; Dixon DA J Phys Chem A; 2007 Nov; 111(46):11908-21. PubMed ID: 17958402 [TBL] [Abstract][Full Text] [Related]
43. Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies. Isegawa M; Peverati R; Truhlar DG J Chem Phys; 2012 Dec; 137(24):244104. PubMed ID: 23277925 [TBL] [Abstract][Full Text] [Related]
44. Analyzing the errors of DFT approximations for compressed water systems. Alfè D; Bartók AP; Csányi G; Gillan MJ J Chem Phys; 2014 Jul; 141(1):014104. PubMed ID: 25005274 [TBL] [Abstract][Full Text] [Related]
45. Characterization of the potential energy surfaces of two small but challenging noncovalent dimers: (P2 )2 and (PCCP)2. Van Dornshuld E; Tschumper GS J Comput Chem; 2014 Mar; 35(6):479-87. PubMed ID: 24403058 [TBL] [Abstract][Full Text] [Related]
46. Benchmark Calculations of the Energies for Binding Excess Electrons to Water Clusters. Vysotskiy VP; Cederbaum LS; Sommerfeld T; Voora VK; Jordan KD J Chem Theory Comput; 2012 Mar; 8(3):893-900. PubMed ID: 26593351 [TBL] [Abstract][Full Text] [Related]
47. Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 model. Valeev EF; Daniel Crawford T J Chem Phys; 2008 Jun; 128(24):244113. PubMed ID: 18601323 [TBL] [Abstract][Full Text] [Related]
48. First-principles energetics of water clusters and ice: a many-body analysis. Gillan MJ; Alfè D; Bartók AP; Csányi G J Chem Phys; 2013 Dec; 139(24):244504. PubMed ID: 24387379 [TBL] [Abstract][Full Text] [Related]
49. Benchmark structures and binding energies of small water clusters with anharmonicity corrections. Temelso B; Archer KA; Shields GC J Phys Chem A; 2011 Nov; 115(43):12034-46. PubMed ID: 21910428 [TBL] [Abstract][Full Text] [Related]
50. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations. Ruckenstein E; Shulgin IL; Tilson JL J Phys Chem A; 2005 Feb; 109(5):807-15. PubMed ID: 16838951 [TBL] [Abstract][Full Text] [Related]
51. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves. Ess DH; Cook TC J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025 [TBL] [Abstract][Full Text] [Related]
52. On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies. Feller D; Peterson KA; Hill JG J Chem Phys; 2011 Jul; 135(4):044102. PubMed ID: 21806085 [TBL] [Abstract][Full Text] [Related]
53. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory. Zope RR; Dunlap BI J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149 [TBL] [Abstract][Full Text] [Related]
54. Structures, energetics and vibrational frequency shifts of hydrated pyrimidine. Howard JC; Hammer NI; Tschumper GS Chemphyschem; 2011 Dec; 12(17):3262-73. PubMed ID: 21994177 [TBL] [Abstract][Full Text] [Related]
55. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
56. Basis set consistent revision of the S22 test set of noncovalent interaction energies. Takatani T; Hohenstein EG; Malagoli M; Marshall MS; Sherrill CD J Chem Phys; 2010 Apr; 132(14):144104. PubMed ID: 20405982 [TBL] [Abstract][Full Text] [Related]
57. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate. Kurtén T; Sundberg MR; Vehkamäki H; Noppel M; Blomqvist J; Kulmala M J Phys Chem A; 2006 Jun; 110(22):7178-88. PubMed ID: 16737269 [TBL] [Abstract][Full Text] [Related]
58. Probing the effects of heterogeneity on delocalized pi...pi interaction energies. Bates DM; Anderson JA; Oloyede P; Tschumper GS Phys Chem Chem Phys; 2008 May; 10(19):2775-9. PubMed ID: 18464993 [TBL] [Abstract][Full Text] [Related]
59. Benchmark calculations on the adiabatic ionization potentials of M-NH(3) (M=Na,Al,Ga,In,Cu,Ag). Li S; Peterson KA; Dixon DA J Chem Phys; 2008 Apr; 128(15):154301. PubMed ID: 18433203 [TBL] [Abstract][Full Text] [Related]
60. Approaching the complete basis set limit of CCSD(T) for large systems by the third-order incremental dual-basis set zero-buffer F12 method. Zhang J; Dolg M J Chem Phys; 2014 Jan; 140(4):044114. PubMed ID: 25669512 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]