These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26270863)

  • 1. Analysis of Accelerants in Fire Debris - Data Interpretation.
    Bertsch W
    Forensic Sci Rev; 1997 Jun; 9(1):1-22. PubMed ID: 26270863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the effects of a Micelle Encapsulator Fire Suppression Agent on dynamic headspace analysis of fire debris samples.
    McGee E; Lang TL
    J Forensic Sci; 2002 Mar; 47(2):267-74. PubMed ID: 11908594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of accelerants in blood of cadavers found in the wreckage after fire.
    Iwasaki Y; Yashiki M; Kojima T; Miyazaki T
    Am J Forensic Med Pathol; 1998 Mar; 19(1):80-6. PubMed ID: 9539399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valid internal standard technique for arson detection based on gas chromatography-mass spectrometry.
    Salgueiro PA; Borges CM; Bettencourt da Silva RJ
    J Chromatogr A; 2012 Sep; 1257():189-94. PubMed ID: 22920302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contemporary Sample Preparation Methods for the Detection of Ignitable Liquids in Suspect Arson Cases.
    Bertsch W; Ren Q
    Forensic Sci Rev; 1999 Dec; 11(2):141-56. PubMed ID: 26255903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of accelerant in fire debris by pyrolysis gas chromatography-mass spectrometry].
    Zhang J; Liu J
    Se Pu; 2019 Apr; 37(4):426-431. PubMed ID: 30977346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research progress on interference in the identification of accelerants in a fire scene].
    Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J
    Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Headspace sorptive extraction for the detection of combustion accelerants in fire debris.
    Cacho JI; Campillo N; Aliste M; Viñas P; Hernández-Córdoba M
    Forensic Sci Int; 2014 May; 238():26-32. PubMed ID: 24631666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics.
    Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution.
    Lu Y; Chen P; Harrington PB
    Anal Bioanal Chem; 2009 Aug; 394(8):2061-7. PubMed ID: 19396432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of decision tree and naïve Bayes algorithms in detecting trace residue of gasoline based on gas chromatography-mass spectrometry data.
    Md Ghazi MGB; Chuen Lee L; Samsudin AS; Sino H
    Forensic Sci Res; 2023 Sep; 8(3):249-255. PubMed ID: 38221967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two suicidal fatalities due to the ingestion of chlorfenvinphos formulations: simultaneous determination of the pesticide and the petroleum distillates in tissues by gas chromatography-flame-ionization detection and gas chromatography-mass spectrometry.
    Martínez MA; Ballesteros S
    J Anal Toxicol; 2012; 36(1):44-51. PubMed ID: 22290752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional analysis for identification of arson accelerants by electron ionization Fourier transform ion cyclotron resonance high-resolution mass spectrometry.
    Rodgers RP; Blumer EN; Freitas MA; Marshall AG
    J Forensic Sci; 2001 Mar; 46(2):268-79. PubMed ID: 11305428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose.
    Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fire accelerant classification from GC-MS data of suspected arson cases using machine-learning models.
    Park C; Lee JB; Park W; Lee DK
    Forensic Sci Int; 2023 May; 346():111646. PubMed ID: 37001430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography.
    Frysinger GS; Gaines RB
    J Forensic Sci; 2002 May; 47(3):471-82. PubMed ID: 12051325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network.
    Bogdal C; Schellenberg R; Lory M; Bovens M; Höpli O
    Forensic Sci Int; 2022 Mar; 332():111177. PubMed ID: 35065332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.