BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26271112)

  • 21. The impact of left hemisphere stroke on force control with familiar and novel objects: neuroanatomic substrates and relationship to apraxia.
    Dawson AM; Buxbaum LJ; Duff SV
    Brain Res; 2010 Mar; 1317():124-36. PubMed ID: 19945445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tool use kinematics across different modes of execution. Implications for action representation and apraxia.
    Hermsdörfer J; Li Y; Randerath J; Roby-Brami A; Goldenberg G
    Cortex; 2013 Jan; 49(1):184-99. PubMed ID: 22176873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct cognitive components and their neural substrates underlying praxis and language deficits following left hemisphere stroke.
    Schmidt CC; Achilles EIS; Fink GR; Weiss PH
    Cortex; 2022 Jan; 146():200-215. PubMed ID: 34896806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. No double-dissociation between optic ataxia and visual agnosia: multiple sub-streams for multiple visuo-manual integrations.
    Pisella L; Binkofski F; Lasek K; Toni I; Rossetti Y
    Neuropsychologia; 2006; 44(13):2734-48. PubMed ID: 16753188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of conflict, feedback, and action comprehension in monitoring of action errors: Evidence for internal and external routes.
    Howard CM; Smith LL; Coslett HB; Buxbaum LJ
    Cortex; 2019 Jun; 115():184-200. PubMed ID: 30831536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lesion Sites Associated with Allocentric and Egocentric Visuospatial Neglect in Acute Stroke.
    Kenzie JM; Girgulis KA; Semrau JA; Findlater SE; Desai JA; Dukelow SP
    Brain Connect; 2015 Sep; 5(7):413-22. PubMed ID: 25575355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The neural correlates of limb apraxia: An anatomical likelihood estimation meta-analysis of lesion-symptom mapping studies in brain-damaged patients.
    Metaireau M; Osiurak F; Seye A; Lesourd M
    Neurosci Biobehav Rev; 2024 Jul; 162():105720. PubMed ID: 38754714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deficient body structural description contributes to apraxic end-position errors in imitation.
    Dafsari HS; Dovern A; Fink GR; Weiss PH
    Neuropsychologia; 2019 Oct; 133():107150. PubMed ID: 31369744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Limb Apraxias: The Influence of Higher Order Perceptual and Semantic Deficits in Motor Recovery After Stroke.
    Rounis E; Binkofski F
    Stroke; 2023 Jan; 54(1):30-43. PubMed ID: 36542070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms and neuroanatomy of response selection in tool and non-tool action tasks: Evidence from left-hemisphere stroke.
    Garcea FE; Buxbaum LJ
    Cortex; 2023 Oct; 167():335-350. PubMed ID: 37598647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterns of poststroke brain damage that predict speech production errors in apraxia of speech and aphasia dissociate.
    Basilakos A; Rorden C; Bonilha L; Moser D; Fridriksson J
    Stroke; 2015 Jun; 46(6):1561-6. PubMed ID: 25908457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterising factors underlying praxis deficits in chronic left hemisphere stroke patients.
    Rounis E; Halai A; Pizzamiglio G; Lambon Ralph MA
    Cortex; 2021 Sep; 142():154-168. PubMed ID: 34271260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 100 years after Liepmann-Lesion correlates of diminished selection and application of familiar versus novel tools.
    Stoll SEM; Finkel L; Buchmann I; Hassa T; Spiteri S; Liepert J; Randerath J
    Cortex; 2022 Jan; 146():1-23. PubMed ID: 34801831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pure apraxia of speech due to infarct in premotor cortex.
    Patira R; Ciniglia L; Calvert T; Altschuler EL
    Neurol Neurochir Pol; 2017; 51(6):519-524. PubMed ID: 28844393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical brain regions for action recognition: lesion symptom mapping in left hemisphere stroke.
    Kalénine S; Buxbaum LJ; Coslett HB
    Brain; 2010 Nov; 133(11):3269-80. PubMed ID: 20805101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced competition between tool action neighbors in left hemisphere stroke.
    Garcea FE; Stoll H; Buxbaum LJ
    Cortex; 2019 Nov; 120():269-283. PubMed ID: 31352237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shared neural substrates of apraxia and aphasia.
    Goldenberg G; Randerath J
    Neuropsychologia; 2015 Aug; 75():40-9. PubMed ID: 26004063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.
    Andres M; Pelgrims B; Olivier E
    Cortex; 2013 Sep; 49(8):2097-105. PubMed ID: 23313011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ideomotor apraxia in Alzheimer disease and left hemisphere stroke: limb transitive and intransitive movements.
    Foundas AL; Macauley BL; Raymer AM; Maher LM; Rothi LJ; Heilman KM
    Neuropsychiatry Neuropsychol Behav Neurol; 1999 Jul; 12(3):161-6. PubMed ID: 10456799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tool responsive regions in the posterior parietal cortex: effect of differences in motor goal and target object during imagined transitive movements.
    Vingerhoets G; Acke F; Vandemaele P; Achten E
    Neuroimage; 2009 Oct; 47(4):1832-43. PubMed ID: 19523524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.