BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26271140)

  • 1. Inhibition of tumor energy pathways for targeted esophagus cancer therapy.
    Shafaee A; Dastyar DZ; Islamian JP; Hatamian M
    Metabolism; 2015 Oct; 64(10):1193-8. PubMed ID: 26271140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling.
    Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA
    Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux.
    Mathupala SP
    Recent Pat Anticancer Drug Discov; 2011 Jan; 6(1):6-14. PubMed ID: 21110820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA.
    Ooi AT; Gomperts BN
    Clin Cancer Res; 2015 Jun; 21(11):2440-4. PubMed ID: 25838393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting AMPK in the treatment of malignancies.
    Vakana E; Altman JK; Platanias LC
    J Cell Biochem; 2012 Feb; 113(2):404-9. PubMed ID: 21928327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response.
    Gill KS; Fernandes P; O'Donovan TR; McKenna SL; Doddakula KK; Power DG; Soden DM; Forde PF
    Biochim Biophys Acta; 2016 Aug; 1866(1):87-105. PubMed ID: 27373814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets.
    Ononye SN; Shi W; Wali VB; Aktas B; Jiang T; Hatzis C; Pusztai L
    Breast Cancer Res Treat; 2014 Dec; 148(3):477-88. PubMed ID: 25395317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel ginsenoside derivative 20(S)-Rh2E2 suppresses tumor growth and metastasis in vivo and in vitro via intervention of cancer cell energy metabolism.
    Huang Q; Zhang H; Bai LP; Law BYK; Xiong H; Zhou X; Xiao R; Qu YQ; Mok SWF; Liu L; Wong VKW
    Cell Death Dis; 2020 Aug; 11(8):621. PubMed ID: 32796841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metformin, cancer and glucose metabolism.
    Salani B; Del Rio A; Marini C; Sambuceti G; Cordera R; Maggi D
    Endocr Relat Cancer; 2014; 21(6):R461-71. PubMed ID: 25273809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 6-mercaptopurine promotes energetic failure in proliferating T cells.
    Fernández-Ramos AA; Marchetti-Laurent C; Poindessous V; Antonio S; Laurent-Puig P; Bortoli S; Loriot MA; Pallet N
    Oncotarget; 2017 Jun; 8(26):43048-43060. PubMed ID: 28574837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function.
    Mouradian M; Kikawa KD; Dranka BP; Komas SM; Kalyanaraman B; Pardini RS
    Mol Carcinog; 2015 Sep; 54(9):810-20. PubMed ID: 24729481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine monophosphate-activated kinase and its key role in catabolism: structure, regulation, biological activity, and pharmacological activation.
    Krishan S; Richardson DR; Sahni S
    Mol Pharmacol; 2015; 87(3):363-77. PubMed ID: 25422142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery.
    Talekar M; Boreddy SR; Singh A; Amiji M
    Expert Opin Biol Ther; 2014 Aug; 14(8):1145-59. PubMed ID: 24762115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative regulation of the LKB1/AMPK pathway by ERK in human acute myeloid leukemia cells.
    Kawashima I; Mitsumori T; Nozaki Y; Yamamoto T; Shobu-Sueki Y; Nakajima K; Kirito K
    Exp Hematol; 2015 Jul; 43(7):524-33.e1. PubMed ID: 25846811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multifaceted activities of AMPK in tumor progression--why the "one size fits all" definition does not fit at all?
    Bonini MG; Gantner BN
    IUBMB Life; 2013 Nov; 65(11):889-96. PubMed ID: 24265196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy homeostasis and cancer prevention: the AMP-activated protein kinase.
    Fay JR; Steele V; Crowell JA
    Cancer Prev Res (Phila); 2009 Apr; 2(4):301-9. PubMed ID: 19336731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine monophosphate-activated protein kinase: a central regulator of metabolism with roles in diabetes, cancer, and viral infection.
    Hardie DG
    Cold Spring Harb Symp Quant Biol; 2011; 76():155-64. PubMed ID: 22071265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [AMPK as a cellular energy sensor and its function in the organism].
    Miranda N; Tovar AR; Palacios B; Torres N
    Rev Invest Clin; 2007; 59(6):458-69. PubMed ID: 18402338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha linolenic acid and oleic acid additively down-regulate malignant potential and positively cross-regulate AMPK/S6 axis in OE19 and OE33 esophageal cancer cells.
    Moon HS; Batirel S; Mantzoros CS
    Metabolism; 2014 Nov; 63(11):1447-54. PubMed ID: 25129649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.