These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26271140)
1. Inhibition of tumor energy pathways for targeted esophagus cancer therapy. Shafaee A; Dastyar DZ; Islamian JP; Hatamian M Metabolism; 2015 Oct; 64(10):1193-8. PubMed ID: 26271140 [TBL] [Abstract][Full Text] [Related]
2. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659 [TBL] [Abstract][Full Text] [Related]
3. Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux. Mathupala SP Recent Pat Anticancer Drug Discov; 2011 Jan; 6(1):6-14. PubMed ID: 21110820 [TBL] [Abstract][Full Text] [Related]
4. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA. Ooi AT; Gomperts BN Clin Cancer Res; 2015 Jun; 21(11):2440-4. PubMed ID: 25838393 [TBL] [Abstract][Full Text] [Related]
5. Targeting AMPK in the treatment of malignancies. Vakana E; Altman JK; Platanias LC J Cell Biochem; 2012 Feb; 113(2):404-9. PubMed ID: 21928327 [TBL] [Abstract][Full Text] [Related]
6. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Gill KS; Fernandes P; O'Donovan TR; McKenna SL; Doddakula KK; Power DG; Soden DM; Forde PF Biochim Biophys Acta; 2016 Aug; 1866(1):87-105. PubMed ID: 27373814 [TBL] [Abstract][Full Text] [Related]
7. Metabolic isoenzyme shifts in cancer as potential novel therapeutic targets. Ononye SN; Shi W; Wali VB; Aktas B; Jiang T; Hatzis C; Pusztai L Breast Cancer Res Treat; 2014 Dec; 148(3):477-88. PubMed ID: 25395317 [TBL] [Abstract][Full Text] [Related]
8. Metformin, cancer and glucose metabolism. Salani B; Del Rio A; Marini C; Sambuceti G; Cordera R; Maggi D Endocr Relat Cancer; 2014; 21(6):R461-71. PubMed ID: 25273809 [TBL] [Abstract][Full Text] [Related]
9. 6-mercaptopurine promotes energetic failure in proliferating T cells. Fernández-Ramos AA; Marchetti-Laurent C; Poindessous V; Antonio S; Laurent-Puig P; Bortoli S; Loriot MA; Pallet N Oncotarget; 2017 Jun; 8(26):43048-43060. PubMed ID: 28574837 [TBL] [Abstract][Full Text] [Related]
10. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mouradian M; Kikawa KD; Dranka BP; Komas SM; Kalyanaraman B; Pardini RS Mol Carcinog; 2015 Sep; 54(9):810-20. PubMed ID: 24729481 [TBL] [Abstract][Full Text] [Related]
11. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy. Amoedo ND; Obre E; Rossignol R Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330 [TBL] [Abstract][Full Text] [Related]
12. Adenosine monophosphate-activated kinase and its key role in catabolism: structure, regulation, biological activity, and pharmacological activation. Krishan S; Richardson DR; Sahni S Mol Pharmacol; 2015; 87(3):363-77. PubMed ID: 25422142 [TBL] [Abstract][Full Text] [Related]
13. Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery. Talekar M; Boreddy SR; Singh A; Amiji M Expert Opin Biol Ther; 2014 Aug; 14(8):1145-59. PubMed ID: 24762115 [TBL] [Abstract][Full Text] [Related]
14. Negative regulation of the LKB1/AMPK pathway by ERK in human acute myeloid leukemia cells. Kawashima I; Mitsumori T; Nozaki Y; Yamamoto T; Shobu-Sueki Y; Nakajima K; Kirito K Exp Hematol; 2015 Jul; 43(7):524-33.e1. PubMed ID: 25846811 [TBL] [Abstract][Full Text] [Related]
15. The multifaceted activities of AMPK in tumor progression--why the "one size fits all" definition does not fit at all? Bonini MG; Gantner BN IUBMB Life; 2013 Nov; 65(11):889-96. PubMed ID: 24265196 [TBL] [Abstract][Full Text] [Related]
16. Energy homeostasis and cancer prevention: the AMP-activated protein kinase. Fay JR; Steele V; Crowell JA Cancer Prev Res (Phila); 2009 Apr; 2(4):301-9. PubMed ID: 19336731 [TBL] [Abstract][Full Text] [Related]
17. Adenosine monophosphate-activated protein kinase: a central regulator of metabolism with roles in diabetes, cancer, and viral infection. Hardie DG Cold Spring Harb Symp Quant Biol; 2011; 76():155-64. PubMed ID: 22071265 [TBL] [Abstract][Full Text] [Related]
18. [AMPK as a cellular energy sensor and its function in the organism]. Miranda N; Tovar AR; Palacios B; Torres N Rev Invest Clin; 2007; 59(6):458-69. PubMed ID: 18402338 [TBL] [Abstract][Full Text] [Related]
19. Alpha linolenic acid and oleic acid additively down-regulate malignant potential and positively cross-regulate AMPK/S6 axis in OE19 and OE33 esophageal cancer cells. Moon HS; Batirel S; Mantzoros CS Metabolism; 2014 Nov; 63(11):1447-54. PubMed ID: 25129649 [TBL] [Abstract][Full Text] [Related]
20. Role of hypothalamic AMP-kinase in food intake regulation. Minokoshi Y; Shiuchi T; Lee S; Suzuki A; Okamoto S Nutrition; 2008 Sep; 24(9):786-90. PubMed ID: 18725075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]