These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26271140)
41. Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Fumarola C; Petronini PG; Alfieri R Biochem Pharmacol; 2018 May; 151():114-125. PubMed ID: 29530507 [TBL] [Abstract][Full Text] [Related]
42. The halothane gene, energy metabolism, adenosine monophosphate-activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle. Shen QW; Underwood KR; Means WJ; McCormick RJ; Du M J Anim Sci; 2007 Apr; 85(4):1054-61. PubMed ID: 17202397 [TBL] [Abstract][Full Text] [Related]
43. Network pharmacology for cancer drug discovery: are we there yet? Azmi AS Future Med Chem; 2012 May; 4(8):939-41. PubMed ID: 22650234 [No Abstract] [Full Text] [Related]
44. Natural Products and Derivatives Targeting at Cancer Energy Metabolism: A Potential Treatment Strategy. Wang QQ; Li MX; Li C; Gu XX; Zheng MZ; Chen LX; Li H Curr Med Sci; 2020 Apr; 40(2):205-217. PubMed ID: 32337682 [TBL] [Abstract][Full Text] [Related]
45. Drugging cancer metabolism: Expectations vs. reality. Montrose DC; Galluzzi L Int Rev Cell Mol Biol; 2019; 347():1-26. PubMed ID: 31451211 [TBL] [Abstract][Full Text] [Related]
46. Targeting tumor glycolysis by a mitotropic agent. Ganapathy-Kanniappan S Expert Opin Ther Targets; 2016; 20(1):1-5. PubMed ID: 26420565 [TBL] [Abstract][Full Text] [Related]
48. Clinical development of cancer therapeutics that target metabolism. Clem BF; O'Neal J; Klarer AC; Telang S; Chesney J QJM; 2016 Jun; 109(6):367-72. PubMed ID: 26428335 [TBL] [Abstract][Full Text] [Related]
49. Metabolism and oxidative stress response pathways in kidney cancer: a tale of chance and necessity. Sourbier C; Srinivasan R; Linehan WM Am Soc Clin Oncol Educ Book; 2015; ():220-5. PubMed ID: 25993160 [TBL] [Abstract][Full Text] [Related]
50. Metabolic control in cancer cells. Fajas L Ann Endocrinol (Paris); 2013 May; 74(2):71-3. PubMed ID: 23587350 [TBL] [Abstract][Full Text] [Related]
51. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Diaz-Ruiz R; Rigoulet M; Devin A Biochim Biophys Acta; 2011 Jun; 1807(6):568-76. PubMed ID: 20804724 [TBL] [Abstract][Full Text] [Related]
52. Metabolic pathway of 4-pyridone-3-carboxamide-1β-d-ribonucleoside and its effects on cellular energetics. Pelikant-Malecka I; Kaniewska-Bednarczuk E; Szrok S; Sielicka A; Sledzinski M; Orlewska C; Smolenski RT; Slominska EM Int J Biochem Cell Biol; 2017 Jul; 88():31-43. PubMed ID: 28323211 [TBL] [Abstract][Full Text] [Related]
53. Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Yang HY; Wu CY; Powell JD; Lu KL Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32512898 [TBL] [Abstract][Full Text] [Related]
54. The relevance of tyrosine kinase inhibitors for global metabolic pathways in cancer. Poliaková M; Aebersold DM; Zimmer Y; Medová M Mol Cancer; 2018 Feb; 17(1):27. PubMed ID: 29455660 [TBL] [Abstract][Full Text] [Related]
55. Potentiation of anti-cancer treatment by modulators of energy metabolism. Shoshan MC Curr Pharm Biotechnol; 2013; 14(3):313-30. PubMed ID: 22201600 [TBL] [Abstract][Full Text] [Related]
56. Targeting the Warburg effect in hematological malignancies: from PET to therapy. Shanmugam M; McBrayer SK; Rosen ST Curr Opin Oncol; 2009 Nov; 21(6):531-6. PubMed ID: 19587591 [TBL] [Abstract][Full Text] [Related]