These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26271348)

  • 1. Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation.
    Liu H; Meng X; Dao TD; Zhang H; Li P; Chang K; Wang T; Li M; Nagao T; Ye J
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11545-9. PubMed ID: 26271348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles.
    Song H; Meng X; Dao TD; Zhou W; Liu H; Shi L; Zhang H; Nagao T; Kako T; Ye J
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):408-416. PubMed ID: 29226665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Energy-Saving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst.
    Yun D; Park DS; Lee KR; Yun YS; Kim TY; Park H; Lee H; Yi J
    ChemSusChem; 2017 Sep; 10(18):3671-3678. PubMed ID: 28834353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave Heating-Assisted Catalytic Dry Reforming of Methane to Syngas.
    Hamzehlouia S; Jaffer SA; Chaouki J
    Sci Rep; 2018 Jun; 8(1):8940. PubMed ID: 29895961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated CO
    Bhaskaran A; Singh SA; Reddy BM; Roy S
    Langmuir; 2024 Jul; 40(29):14766-14778. PubMed ID: 38978485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single layered hollow NiO-NiS catalyst with large specific surface area and highly efficient visible-light-driven carbon dioxide conversion.
    Park BH; Kim M; Park NK; Ryu HJ; Baek JI; Kang M
    Chemosphere; 2021 Oct; 280():130759. PubMed ID: 33964757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Induced Redox Looping of a Rhodium/Ce
    Yang Y; Chai Z; Qin X; Zhang Z; Muhetaer A; Wang C; Huang H; Yang C; Ma D; Li Q; Xu D
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202200567. PubMed ID: 35277912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO
    Nikolaraki E; Goula G; Panagiotopoulou P; Taylor MJ; Kousi K; Kyriakou G; Kondarides DI; Lambert RM; Yentekakis IV
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst.
    Cho Y; Shoji S; Yamaguchi A; Hoshina T; Fujita T; Abe H; Miyauchi M
    Chem Commun (Camb); 2020 Apr; 56(33):4611-4614. PubMed ID: 32211643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO
    Bi J; Xu B; Sun L; Huang H; Fang S; Li L; Wu L
    Chempluschem; 2019 Aug; 84(8):1149-1154. PubMed ID: 31943960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The simultaneous adsorption, activation and in situ reduction of carbon dioxide over Au-loading BiOCl with rich oxygen vacancies.
    Li YL; Liu Y; Mu HY; Liu RH; Hao YJ; Wang XJ; Hildebrandt D; Liu X; Li FT
    Nanoscale; 2021 Jan; 13(4):2585-2592. PubMed ID: 33480957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.
    Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR
    Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming].
    Ji HB; Xu JH; Xie JF; Chen QL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1246-50. PubMed ID: 18800697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate.
    Li Z; Lu J; Ding J; Wang W
    J Colloid Interface Sci; 2024 Dec; 676():1001-1010. PubMed ID: 39068832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Solar-Driven Dry Reforming of Methane on a Rh/LaNiO
    Yao Y; Li B; Gao X; Yang Y; Yu J; Lei J; Li Q; Meng X; Chen L; Xu D
    Adv Mater; 2023 Sep; 35(39):e2303654. PubMed ID: 37314337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.