These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26271349)

  • 1. Short CCG repeat in huntingtin gene is an obstacle for replicative DNA polymerases, potentially hampering progression of replication fork.
    Le HP; Masuda Y; Tsurimoto T; Maki S; Katayama T; Furukohri A; Maki H
    Genes Cells; 2015 Oct; 20(10):817-33. PubMed ID: 26271349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trinucleotide repeats affect DNA replication in vivo.
    Samadashwily GM; Raca G; Mirkin SM
    Nat Genet; 1997 Nov; 17(3):298-304. PubMed ID: 9354793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a triple DNA polymerase replisome.
    McInerney P; Johnson A; Katz F; O'Donnell M
    Mol Cell; 2007 Aug; 27(4):527-38. PubMed ID: 17707226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication and expansion of trinucleotide repeats in yeast.
    Pelletier R; Krasilnikova MM; Samadashwily GM; Lahue R; Mirkin SM
    Mol Cell Biol; 2003 Feb; 23(4):1349-57. PubMed ID: 12556494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication.
    Iyer RR; Wells RD
    J Biol Chem; 1999 Feb; 274(6):3865-77. PubMed ID: 9920942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.
    Dubarry M; Lawless C; Banks AP; Cockell S; Lydall D
    G3 (Bethesda); 2015 Aug; 5(10):2187-97. PubMed ID: 26297725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently.
    Yu C; Gan H; Zhang Z
    Mol Cell Biol; 2017 Nov; 37(21):. PubMed ID: 28784720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instability of regions containing expanded CAG repeats during replication in Escherichia coli probed by labeled oligonucleotides.
    Ito W; Goto J; Kanazawa I; Kurosawa Y
    Biochem Biophys Res Commun; 1997 Nov; 240(2):471-7. PubMed ID: 9388503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-stranded DNA-binding protein in vitro eliminates the orientation-dependent impediment to polymerase passage on CAG/CTG repeats.
    Delagoutte E; Goellner GM; Guo J; Baldacci G; McMurray CT
    J Biol Chem; 2008 May; 283(19):13341-56. PubMed ID: 18263578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability.
    Liu G; Chen X; Leffak M
    Mol Cell Biol; 2013 Feb; 33(3):571-81. PubMed ID: 23166299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli.
    Kim SH; Pytlos MJ; Sinden RR
    Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression.
    Yao NY; Georgescu RE; Finkelstein J; O'Donnell ME
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13236-41. PubMed ID: 19666586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant.
    Gawel D; Pham PT; Fijalkowska IJ; Jonczyk P; Schaaper RM
    J Bacteriol; 2008 Mar; 190(5):1730-42. PubMed ID: 18156258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloned human FMR1 trinucleotide repeats exhibit a length- and orientation-dependent instability suggestive of in vivo lagging strand secondary structure.
    Hirst MC; White PJ
    Nucleic Acids Res; 1998 May; 26(10):2353-8. PubMed ID: 9580685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA double-strand breaks induce deletion of CTG.CAG repeats in an orientation-dependent manner in Escherichia coli.
    Hebert ML; Spitz LA; Wells RD
    J Mol Biol; 2004 Feb; 336(3):655-72. PubMed ID: 15095979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork.
    Karthikeyan R; Vonarx EJ; Straffon AF; Simon M; Faye G; Kunz BA
    J Mol Biol; 2000 Jun; 299(2):405-19. PubMed ID: 10860748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21406-12. PubMed ID: 8702922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the position of the switches between replicative and bypass DNA polymerases.
    Fujii S; Fuchs RP
    EMBO J; 2004 Oct; 23(21):4342-52. PubMed ID: 15470496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.