BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 26271746)

  • 1. Transcriptional maturation of the mouse auditory forebrain.
    Hackett TA; Guo Y; Clause A; Hackett NJ; Garbett K; Zhang P; Polley DB; Mirnics K
    BMC Genomics; 2015 Aug; 16(1):606. PubMed ID: 26271746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing.
    Hackett TA; Clause AR; Takahata T; Hackett NJ; Polley DB
    Brain Struct Funct; 2016 Jun; 221(5):2619-73. PubMed ID: 26159773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. lncRNA expression in the auditory forebrain during postnatal development.
    Guo Y; Zhang P; Sheng Q; Zhao S; Hackett TA
    Gene; 2016 Nov; 593(1):201-216. PubMed ID: 27544636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes.
    Kalish BT; Barkat TR; Diel EE; Zhang EJ; Greenberg ME; Hensch TK
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11744-11752. PubMed ID: 32404418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine A
    Hackett TA
    Anat Rec (Hoboken); 2018 Nov; 301(11):1882-1905. PubMed ID: 30315630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laminar specific gene expression reveals differences in postnatal laminar maturation in mouse auditory, visual, and somatosensory cortex.
    Chang M; Suzuki N; Kawai HD
    J Comp Neurol; 2018 Oct; 526(14):2257-2284. PubMed ID: 30069894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of R-cadherin and N-cadherin by cell groups and fiber tracts in the developing mouse forebrain: relation to the formation of functional circuits.
    Obst-Pernberg K; Medina L; Redies C
    Neuroscience; 2001; 106(3):505-33. PubMed ID: 11591453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular networks involved in mouse cerebral corticogenesis and spatio-temporal regulation of Sox4 and Sox11 novel antisense transcripts revealed by transcriptome profiling.
    Ling KH; Hewitt CA; Beissbarth T; Hyde L; Banerjee K; Cheah PS; Cannon PZ; Hahn CN; Thomas PQ; Smyth GK; Tan SS; Thomas T; Scott HS
    Genome Biol; 2009; 10(10):R104. PubMed ID: 19799774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.
    Gluck C; Min S; Oyelakin A; Smalley K; Sinha S; Romano RA
    BMC Genomics; 2016 Nov; 17(1):923. PubMed ID: 27852218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages.
    Zhan S; Zhao W; Song T; Dong Y; Guo J; Cao J; Zhong T; Wang L; Li L; Zhang H
    Funct Integr Genomics; 2018 Jan; 18(1):43-54. PubMed ID: 28993898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide transcriptomic analysis of the forebrain of postnatal Slc13a4
    Harvey TJ; Davila RA; Vidovic D; Sharmin S; Piper M; Simmons DG
    BMC Res Notes; 2021 Jul; 14(1):269. PubMed ID: 34256843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic patterned expression of orphan nuclear receptor genes RORalpha and RORbeta in developing mouse forebrain.
    Nakagawa Y; O'Leary DD
    Dev Neurosci; 2003; 25(2-4):234-44. PubMed ID: 12966220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early auditory deprivation alters expression of NMDA receptor subunit NR1 mRNA in the rat auditory cortex.
    Lu J; Cui Y; Cai R; Mao Y; Zhang J; Sun X
    J Neurosci Res; 2008 May; 86(6):1290-6. PubMed ID: 18041094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decline of long-term potentiation (LTP) in the rat auditory cortex in vivo during postnatal life: involvement of NR2B subunits.
    Hogsden JL; Dringenberg HC
    Brain Res; 2009 Aug; 1283():25-33. PubMed ID: 19520065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment.
    Roy-Carson S; Natukunda K; Chou HC; Pal N; Farris C; Schneider SQ; Kuhlman JA
    BMC Genomics; 2017 Apr; 18(1):290. PubMed ID: 28403821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of dopamine receptors in the forebrain of the domestic chick in relation to auditory imprinting. An autoradiographic study.
    Schnabel R; Braun K
    Brain Res; 1996 May; 720(1-2):120-30. PubMed ID: 8782904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating transcriptome-wide sex dimorphism by multi-level analysis of single-cell RNA sequencing data in ten mouse cell types.
    Lu T; Mar JC
    Biol Sex Differ; 2020 Nov; 11(1):61. PubMed ID: 33153500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk RNA sequencing of human pediatric lung cell populations reveals unique transcriptomic signature associated with postnatal pulmonary development.
    Bandyopadhyay G; Jehrio MG; Baker C; Bhattacharya S; Misra RS; Huyck HL; Chu C; Myers JR; Ashton J; Polter S; Cochran M; Bushnell T; Dutra J; Katzman PJ; Deutsch GH; Mariani TJ; Pryhuber GS
    Am J Physiol Lung Cell Mol Physiol; 2024 May; 326(5):L604-L617. PubMed ID: 38442187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome profiling reveals expression signatures of cranial neural crest cells arising from different axial levels.
    Lumb R; Buckberry S; Secker G; Lawrence D; Schwarz Q
    BMC Dev Biol; 2017 Apr; 17(1):5. PubMed ID: 28407732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in glycine receptor subunit expression in forebrain regions of the Wistar rat over development.
    Jonsson S; Morud J; Pickering C; Adermark L; Ericson M; Söderpalm B
    Brain Res; 2012 Mar; 1446():12-21. PubMed ID: 22330726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.