These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26271900)

  • 21. Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing.
    Shi L; Shang J; Liu Z; Li Y; Fu G; Liu X; Pan P; Luo H; Liu G
    Nanotechnology; 2020 Nov; 31(46):465501. PubMed ID: 32764189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable Lifetime and Nonlinearity in Two Dimensional Materials Plasmonic-Photonic Absorber.
    Zhou R; Yang S; Zhao Y
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Broadband and Spectrally Selective Photothermal Conversion through Nanocluster Assembly of Disordered Plasmonic Metasurfaces.
    Chen JA; Qin Y; Niu Y; Mao P; Song F; Palmer RE; Wang G; Zhang S; Han M
    Nano Lett; 2023 Aug; 23(15):7236-7243. PubMed ID: 37326318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative investigation of sensing behaviors between gap and lattice plasmon modes in a metallic nanoring array.
    Liang Y; Li L; Lu M; Yuan H; Long Z; Peng W; Xu T
    Nanoscale; 2018 Jan; 10(2):548-555. PubMed ID: 29185577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating.
    Dai L; Jiang C
    Opt Express; 2009 Oct; 17(22):20502-14. PubMed ID: 19997279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the Absorption Spectra of a Plasmonic Metamaterial Absorber Based on Disc-in-Hole Nanometallic Structure.
    Mahros AM; Alharbi Y
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
    Hung YT; Huang CB; Huang JS
    Opt Express; 2012 Aug; 20(18):20342-55. PubMed ID: 23037085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-Scale, Bandwidth-Adjustable, Visible Absorbers by Evaporation and Annealing Process.
    Long X; Yue W; Su Y; Chen W; Li L
    Nanoscale Res Lett; 2019 Feb; 14(1):48. PubMed ID: 30756198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor.
    Ren W; Dai Y; Cai H; Ding H; Pan N; Wang X
    Opt Express; 2013 Apr; 21(8):10251-8. PubMed ID: 23609734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct Observation of Optical Field Phase Carving in the Vicinity of Plasmonic Metasurfaces.
    Dagens B; Février M; Gogol P; Blaize S; Apuzzo A; Magno G; Mégy R; Lerondel G
    Nano Lett; 2016 Jul; 16(7):4014-8. PubMed ID: 27172348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarization-Selective Bidirectional Absorption Based on a Bilayer Plasmonic Metasurface.
    Li T; Chen BQ; He Q; Bian LA; Shang XJ; Song GF
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light tunable plasmonic metasurfaces.
    Charipar N; Johns P; Suess RJ; Kim H; Geldmeier J; Trammell S; Charipar K; Naciri J; Piqué A; Fontana J
    Opt Express; 2020 Jul; 28(15):22891-22898. PubMed ID: 32752542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy.
    Lee IH; Yoo D; Avouris P; Low T; Oh SH
    Nat Nanotechnol; 2019 Apr; 14(4):313-319. PubMed ID: 30742134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Piezoelectric tuning of narrowband perfect plasmonic absorbers via an optomechanic cavity.
    Yang A; Yang K; Yu H; Tan X; Li J; Zhou L; Liu H; Song H; Tang J; Liu F; Zhu AY; Guo Q; Yi F
    Opt Lett; 2016 Jun; 41(12):2803-6. PubMed ID: 27304293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning localized transverse surface plasmon resonance in electricity-selected single-wall carbon nanotubes by electrochemical doping.
    Igarashi T; Kawai H; Yanagi K; Cuong NT; Okada S; Pichler T
    Phys Rev Lett; 2015 May; 114(17):176807. PubMed ID: 25978253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural color printing based on plasmonic metasurfaces of perfect light absorption.
    Cheng F; Gao J; Luk TS; Yang X
    Sci Rep; 2015 Jun; 5():11045. PubMed ID: 26047486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.