These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 26271918)
1. Uncertainty in the Bayesian meta-analysis of normally distributed surrogate endpoints. Bujkiewicz S; Thompson JR; Spata E; Abrams KR Stat Methods Med Res; 2017 Oct; 26(5):2287-2318. PubMed ID: 26271918 [TBL] [Abstract][Full Text] [Related]
2. Bayesian meta-analytical methods to incorporate multiple surrogate endpoints in drug development process. Bujkiewicz S; Thompson JR; Riley RD; Abrams KR Stat Med; 2016 Mar; 35(7):1063-89. PubMed ID: 26530518 [TBL] [Abstract][Full Text] [Related]
3. Bivariate network meta-analysis for surrogate endpoint evaluation. Bujkiewicz S; Jackson D; Thompson JR; Turner RM; Städler N; Abrams KR; White IR Stat Med; 2019 Aug; 38(18):3322-3341. PubMed ID: 31131475 [TBL] [Abstract][Full Text] [Related]
4. A simple meta-analytic approach for using a binary surrogate endpoint to predict the effect of intervention on true endpoint. Baker SG Biostatistics; 2006 Jan; 7(1):58-70. PubMed ID: 15972889 [TBL] [Abstract][Full Text] [Related]
5. Comparing Bayesian hierarchical meta-regression methods and evaluating the influence of priors for evaluations of surrogate endpoints on heterogeneous collections of clinical trials. Collier W; Haaland B; Inker LA; Heerspink HJL; Greene T BMC Med Res Methodol; 2024 Feb; 24(1):39. PubMed ID: 38365599 [TBL] [Abstract][Full Text] [Related]
6. Predictive probability of success using surrogate endpoints. Saint-Hilary G; Barboux V; Pannaux M; Gasparini M; Robert V; Mastrantonio G Stat Med; 2019 May; 38(10):1753-1774. PubMed ID: 30548627 [TBL] [Abstract][Full Text] [Related]
7. Differences in surrogate threshold effect estimates between original and simplified correlation-based validation approaches. Schürmann C; Sieben W Stat Med; 2016 Mar; 35(7):1049-62. PubMed ID: 26522510 [TBL] [Abstract][Full Text] [Related]
8. Exploring the relationship between the causal-inference and meta-analytic paradigms for the evaluation of surrogate endpoints. Van der Elst W; Molenberghs G; Alonso A Stat Med; 2016 Apr; 35(8):1281-98. PubMed ID: 26612787 [TBL] [Abstract][Full Text] [Related]
9. Bayesian adjusted R2 for the meta-analytic evaluation of surrogate time-to-event endpoints in clinical trials. Renfro LA; Shi Q; Sargent DJ; Carlin BP Stat Med; 2012 Apr; 31(8):743-61. PubMed ID: 22161275 [TBL] [Abstract][Full Text] [Related]
10. Using Bayesian Evidence Synthesis Methods to Incorporate Real-World Evidence in Surrogate Endpoint Evaluation. Wheaton L; Papanikos A; Thomas A; Bujkiewicz S Med Decis Making; 2023 Jul; 43(5):539-552. PubMed ID: 36998240 [TBL] [Abstract][Full Text] [Related]
11. How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials. Sofeu CL; Rondeau V PLoS One; 2020; 15(1):e0228098. PubMed ID: 31990928 [TBL] [Abstract][Full Text] [Related]
12. Use of copula to model within-study association in bivariate meta-analysis of binomial data at the aggregate level: A Bayesian approach and application to surrogate endpoint evaluation. Papanikos T; Thompson JR; Abrams KR; Bujkiewicz S Stat Med; 2022 Nov; 41(25):4961-4981. PubMed ID: 35932152 [TBL] [Abstract][Full Text] [Related]
13. Bayesian hierarchical meta-analytic methods for modeling surrogate relationships that vary across treatment classes using aggregate data. Papanikos T; Thompson JR; Abrams KR; Städler N; Ciani O; Taylor R; Bujkiewicz S Stat Med; 2020 Apr; 39(8):1103-1124. PubMed ID: 31990083 [TBL] [Abstract][Full Text] [Related]
14. Surrogate endpoint analysis: an exercise in extrapolation. Baker SG; Kramer BS J Natl Cancer Inst; 2013 Mar; 105(5):316-20. PubMed ID: 23264679 [TBL] [Abstract][Full Text] [Related]
15. One-step validation method for surrogate endpoints using data from multiple randomized cancer clinical trials with failure-time endpoints. Sofeu CL; Emura T; Rondeau V Stat Med; 2019 Jul; 38(16):2928-2942. PubMed ID: 30997685 [TBL] [Abstract][Full Text] [Related]
16. A reflection on the causal interpretation of individual-level surrogacy. Alonso A; Van Der Elst W; Molenberghs G; Florez AJ J Biopharm Stat; 2019; 29(3):529-540. PubMed ID: 30773114 [TBL] [Abstract][Full Text] [Related]
17. An investigation into the two-stage meta-analytic copula modelling approach for evaluating time-to-event surrogate endpoints which comprise of one or more events of interest. Dimier N; Todd S Pharm Stat; 2017 Sep; 16(5):322-333. PubMed ID: 28544622 [TBL] [Abstract][Full Text] [Related]
18. A maximum entropy approach for the evaluation of surrogate endpoints based on causal inference. Alonso A; Van der Elst W; Molenberghs G Stat Med; 2018 Dec; 37(29):4525-4538. PubMed ID: 30141219 [TBL] [Abstract][Full Text] [Related]
19. Framework for personalized prediction of treatment response in relapsing remitting multiple sclerosis. Stühler E; Braune S; Lionetto F; Heer Y; Jules E; Westermann C; Bergmann A; van Hövell P; BMC Med Res Methodol; 2020 Feb; 20(1):24. PubMed ID: 32028898 [TBL] [Abstract][Full Text] [Related]
20. A reflection on the possibility of finding a good surrogate. Alonso A; Meyvisch P; Van der Elst W; Molenberghs G; Verbeke G J Biopharm Stat; 2019; 29(3):468-477. PubMed ID: 30686082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]