BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26272203)

  • 1. Predicting chromatin organization using histone marks.
    Huang J; Marco E; Pinello L; Yuan GC
    Genome Biol; 2015 Aug; 16(1):162. PubMed ID: 26272203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments.
    Juric I; Yu M; Abnousi A; Raviram R; Fang R; Zhao Y; Zhang Y; Qiu Y; Yang Y; Li Y; Ren B; Hu M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006982. PubMed ID: 30986246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin.
    Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P
    Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications.
    Lu Y; Qu W; Shan G; Zhang C
    PLoS One; 2015; 10(6):e0130622. PubMed ID: 26091399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational method to predict topologically associating domain boundaries combining histone Marks and sequence information.
    Gan W; Luo J; Li YZ; Guo JL; Zhu M; Li ML
    BMC Genomics; 2019 Dec; 20(Suppl 13):980. PubMed ID: 31881832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization.
    Nikumbh S; Pfeifer N
    BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks.
    Li T; Jia L; Cao Y; Chen Q; Li C
    Genome Biol; 2018 Apr; 19(1):54. PubMed ID: 29690904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput ChIP-Seq for large-scale chromatin studies.
    Chabbert CD; Adjalley SH; Klaus B; Fritsch ES; Gupta I; Pelechano V; Steinmetz LM
    Mol Syst Biol; 2015 Jan; 11(1):777. PubMed ID: 25583149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denoising genome-wide histone ChIP-seq with convolutional neural networks.
    Koh PW; Pierson E; Kundaje A
    Bioinformatics; 2017 Jul; 33(14):i225-i233. PubMed ID: 28881977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pipeline for the identification and characterization of chromatin modifications derived from ChIP-Seq datasets.
    Kaspi A; Ziemann M; Rafehi H; Lazarus R; El-Osta A
    Biochimie; 2012 Nov; 94(11):2353-9. PubMed ID: 22705386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TAD boundary and strength prediction by integrating sequence and epigenetic profile information.
    Wang Y; Liu Y; Xu Q; Xu Y; Cao K; Deng N; Wang R; Zhang X; Zheng R; Li G; Fang Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standardizing chromatin research: a simple and universal method for ChIP-seq.
    Arrigoni L; Richter AS; Betancourt E; Bruder K; Diehl S; Manke T; Bönisch U
    Nucleic Acids Res; 2016 Apr; 44(7):e67. PubMed ID: 26704968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hitchhiker's guide to Hi-C analysis: practical guidelines.
    Lajoie BR; Dekker J; Kaplan N
    Methods; 2015 Jan; 72():65-75. PubMed ID: 25448293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective regulation of chromatin modifications predicts replication timing during cell cycle.
    Van Rechem C; Ji F; Chakraborty D; Black JC; Sadreyev RI; Whetstine JR
    Cell Rep; 2021 Oct; 37(1):109799. PubMed ID: 34610305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using native chromatin immunoprecipitation to interrogate histone variant protein deposition in embryonic stem cells.
    Tseng Z; Wu T; Liu Y; Zhong M; Xiao A
    Methods Mol Biol; 2014; 1176():11-22. PubMed ID: 25030915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of interactions between chromatin modifiers and histone modifications: from ChIP-Seq data to chromatin-signaling.
    Perner J; Lasserre J; Kinkley S; Vingron M; Chung HR
    Nucleic Acids Res; 2014 Dec; 42(22):13689-95. PubMed ID: 25414326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering Noncoding RNA and Chromatin Interactions: Multiplex Chromatin Interaction Analysis by Paired-End Tag Sequencing (mChIA-PET).
    Choy J; Fullwood MJ
    Methods Mol Biol; 2017; 1468():63-89. PubMed ID: 27662871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.