These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 26272308)

  • 1. Fabrication and applications of complex-shaped microparticles via microfluidics.
    Seo KD; Kim DS; Sánchez S
    Lab Chip; 2015; 15(18):3622-6. PubMed ID: 26272308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex three-dimensional microparticles from microfluidic lithography.
    Tian Y; Wang L
    Electrophoresis; 2020 Sep; 41(16-17):1491-1502. PubMed ID: 32012294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications.
    Choi A; Seo KD; Kim DW; Kim BC; Kim DS
    Lab Chip; 2017 Feb; 17(4):591-613. PubMed ID: 28101538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.
    Daniele MA; Boyd DA; Adams AA; Ligler FS
    Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic fabrication of multifunctional particles and their analytical applications.
    Sun XT; Liu M; Xu ZR
    Talanta; 2014 Apr; 121():163-77. PubMed ID: 24607123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer microfabrication technologies for microfluidic systems.
    Becker H; Gärtner C
    Anal Bioanal Chem; 2008 Jan; 390(1):89-111. PubMed ID: 17989961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.
    Parra-Cabrera C; Sporer C; Rodriguez-Villareal I; Rodriguez-Trujillo R; Homs-Corbera A; Samitier J
    Lab Chip; 2012 Oct; 12(20):4143-50. PubMed ID: 22868270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
    Ji XH; Cheng W; Guo F; Liu W; Guo SS; He ZK; Zhao XZ
    Lab Chip; 2011 Aug; 11(15):2561-8. PubMed ID: 21687836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous separation of cells and particles in microfluidic systems.
    Lenshof A; Laurell T
    Chem Soc Rev; 2010 Mar; 39(3):1203-17. PubMed ID: 20179832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Approaches for Protein Crystal Structure Analysis.
    Maeki M; Yamaguchi H; Tokeshi M; Miyazaki M
    Anal Sci; 2016; 32(1):3-9. PubMed ID: 26753699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems.
    Kim M; Leong CM; Pan M; Blauch LR; Tang SKY
    SLAS Technol; 2017 Oct; 22(5):529-535. PubMed ID: 28402212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.