BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26272390)

  • 1. Removing chiral contamination of lactate solutions by selective metabolism of the D-enantiomer.
    Chauliac D; Pullammanappallil PC; Ingram LO; Shanmugam KT
    Biotechnol Lett; 2015 Dec; 37(12):2411-8. PubMed ID: 26272390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici.
    Zhou S; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2003 Apr; 69(4):2237-44. PubMed ID: 12676706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers.
    Jung YK; Kim TY; Park SJ; Lee SY
    Biotechnol Bioeng; 2010 Jan; 105(1):161-71. PubMed ID: 19937727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria.
    Park SJ; Lee SY; Kim TW; Jung YK; Yang TH
    Biotechnol J; 2012 Feb; 7(2):199-212. PubMed ID: 22057878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli.
    Jung YK; Lee SY
    J Biotechnol; 2011 Jan; 151(1):94-101. PubMed ID: 21111011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.
    Varman AM; Yu Y; You L; Tang YJ
    Microb Cell Fact; 2013 Nov; 12():117. PubMed ID: 24274114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B.
    Zhao J; Xu L; Wang Y; Zhao X; Wang J; Garza E; Manow R; Zhou S
    Microb Cell Fact; 2013 Jun; 12():57. PubMed ID: 23758664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(-)-lactate fermentations by recombinant Escherichia coli.
    Grabar TB; Zhou S; Shanmugam KT; Yomano LP; Ingram LO
    Biotechnol Lett; 2006 Oct; 28(19):1527-35. PubMed ID: 16868860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim YH; Hahn JS
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient fermentative production of polymer-grade D-lactate by an engineered alkaliphilic Bacillus sp. strain under non-sterile conditions.
    Assavasirijinda N; Ge D; Yu B; Xue Y; Ma Y
    Microb Cell Fact; 2016 Jan; 15():3. PubMed ID: 26754255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Engineering of Lactobacillus plantarum for Direct l-Lactic Acid Production From Raw Corn Starch.
    Okano K; Uematsu G; Hama S; Tanaka T; Noda H; Kondo A; Honda K
    Biotechnol J; 2018 May; 13(5):e1700517. PubMed ID: 29393585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of optically pure L-phenyllactic acid by using engineered Escherichia coli coexpressing L-lactate dehydrogenase and formate dehydrogenase.
    Zheng Z; Zhao M; Zang Y; Zhou Y; Ouyang J
    J Biotechnol; 2015 Aug; 207():47-51. PubMed ID: 26008622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis.
    Gu SA; Jun C; Joo JC; Kim S; Lee SH; Kim YH
    Enzyme Microb Technol; 2014 May; 58-59():29-35. PubMed ID: 24731822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.
    Wang ZW; Saini M; Lin LJ; Chiang CJ; Chao YP
    J Agric Food Chem; 2015 Nov; 63(43):9583-9. PubMed ID: 26477354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.
    Liaud N; Rosso MN; Fabre N; Crapart S; Herpoël-Gimbert I; Sigoillot JC; Raouche S; Levasseur A
    Microb Cell Fact; 2015 May; 14():66. PubMed ID: 25935554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of the Recent Developments in the Bioproduction of Polylactic Acid and Its Precursors Optically Pure Lactic Acids.
    Huang S; Xue Y; Yu B; Wang L; Zhou C; Ma Y
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms.
    Choi SY; Cho IJ; Lee Y; Park S; Lee SY
    Methods Enzymol; 2019; 627():125-162. PubMed ID: 31630738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth.
    Niu D; Tian K; Prior BA; Wang M; Wang Z; Lu F; Singh S
    Microb Cell Fact; 2014 May; 13():78. PubMed ID: 24884499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.