These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 26272474)

  • 1. A Complete and Accurate Ab Initio Repeat Finding Algorithm.
    Lian S; Chen X; Wang P; Zhang X; Dai X
    Interdiscip Sci; 2016 Mar; 8(1):75-83. PubMed ID: 26272474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical comparison of ab initio repeat finding programs.
    Saha S; Bridges S; Magbanua ZV; Peterson DG
    Nucleic Acids Res; 2008 Apr; 36(7):2284-94. PubMed ID: 18287116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A repetitive sequence assembler based on next-generation sequencing.
    Lian S; Tu Y; Wang Y; Chen X; Wang L
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals.
    Reneker J; Shyu CR
    BMC Bioinformatics; 2005 May; 6():111. PubMed ID: 15869708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HomologMiner: looking for homologous genomic groups in whole genomes.
    Hou M; Berman P; Hsu CH; Harris RS
    Bioinformatics; 2007 Apr; 23(8):917-25. PubMed ID: 17308341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale.
    Girgis HZ
    BMC Bioinformatics; 2015 Jul; 16():227. PubMed ID: 26206263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and distribution of repetitive elements in association with genes in the human genome.
    Liang KC; Tseng JT; Tsai SJ; Sun HS
    Comput Biol Chem; 2015 Aug; 57():29-38. PubMed ID: 25748288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-REKS: identification of Tandem REpeats in sequences with a K-meanS based algorithm.
    Jorda J; Kajava AV
    Bioinformatics; 2009 Oct; 25(20):2632-8. PubMed ID: 19671691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome.
    Becher V; Deymonnaz A; Heiber P
    Bioinformatics; 2009 Jul; 25(14):1746-53. PubMed ID: 19451169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of inter-spread repeat sequence in genomic DNA sequence.
    Murakami H; Sugaya N; Sato M; Imaizumi A; Aburatani S; Horimoto K
    Genome Inform; 2004; 15(1):170-9. PubMed ID: 15712120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence on DNA slippage step-length distribution.
    Borstnik B; Pumpernik D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031913. PubMed ID: 15903465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithm for approximate tandem repeats.
    Landau GM; Schmidt JP; Sokol D
    J Comput Biol; 2001; 8(1):1-18. PubMed ID: 11339903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. phRAIDER: Pattern-Hunter based Rapid Ab Initio Detection of Elementary Repeats.
    Schaeffer CE; Figueroa ND; Liu X; Karro JE
    Bioinformatics; 2016 Jun; 32(12):i209-i215. PubMed ID: 27307619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ProGeRF: proteome and genome repeat finder utilizing a fast parallel hash function.
    Lopes Rda S; Moraes WJ; Rodrigues Tde S; Bartholomeu DC
    Biomed Res Int; 2015; 2015():394157. PubMed ID: 25811026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence repetitiveness quantification and de novo repeat detection by weighted k-mer coverage.
    Feng C; Dai M; Liu Y; Chen M
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo repeat classification and fragment assembly.
    Pevzner PA; Tang H; Tesler G
    Genome Res; 2004 Sep; 14(9):1786-96. PubMed ID: 15342561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CGAT: a comparative genome analysis tool for visualizing alignments in the analysis of complex evolutionary changes between closely related genomes.
    Uchiyama I; Higuchi T; Kobayashi I
    BMC Bioinformatics; 2006 Oct; 7():472. PubMed ID: 17062155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying repeat domains in large genomes.
    Zhi D; Raphael BJ; Price AL; Tang H; Pevzner PA
    Genome Biol; 2006; 7(1):R7. PubMed ID: 16507140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exact joint distribution of the sum of heads and apparent size statistics of a "tandem repeats finder" algorithm.
    Martin DE
    Bull Math Biol; 2006 Nov; 68(8):2353-64. PubMed ID: 16924430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes.
    Mizuno H; Ito K; Wu J; Tanaka T; Kanamori H; Katayose Y; Sasaki T; Matsumoto T
    DNA Res; 2006 Dec; 13(6):267-74. PubMed ID: 17298954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.